IMG-LOGO

Câu hỏi:

06/07/2024 79

Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham khảo hình vẽ).

 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 1)

Tính theo \(a\) thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp hai đáy của lăng trụ \(ABC.A'B'C'.\) 

A.\(\pi {a^3}.\)

B. \(3\pi {a^3}.\)

C.\(2\pi {a^3}.\) 

D.\(4\pi {a^3}.\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 2)

Gọi \(H\) là trung điểm của đoạn \(BC,\) vì \(\Delta ABC\) là tam giác vuông cân nên \(H\) là chân đường cao xuất phát từ đỉnh \(A\) đồng thời cũng là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

Suy ra bán kính đường tròn ngoại tiếp đáy của lăng trụ \(ABC.A'B'C'\) là \(HC.\)

Vì \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\end{array} \right.\) nên \(AH \bot \left( {BCC'B'} \right).\)

Suy ra \(HC\) là hình chiếu vuông góc của \(AC\) lên \(\left( {BCC'B'} \right).\)

Góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) là \(\widehat {AC'H} = {30^0}.\)

Đặt \(HC = x \Rightarrow AC = x\sqrt 2 .\)

Áp dụng định lý Pytago trong \(\Delta ACC'\) ta được \(AC' = \sqrt {2{x^2} + 4{a^2}} .\)

Áp dụng định lý Pytago trong \(\Delta HCC'\) ta được \[HC' = \sqrt {{x^2} + 4{a^2}} .\]

Xét \(\Delta AHC'\) vuông tại \(H\) có: \(\cos \left( {{{30}^0}} \right) = \frac{{HC'}}{{AC'}} \Leftrightarrow \frac{{\sqrt 3 }}{2} = \sqrt {\frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}}} .\)

Khi đó: \(\frac{3}{4} = \frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}} \Leftrightarrow 6{x^2} + 12{a^2} = 4{x^2} + 16{a^2} \Leftrightarrow x = a\sqrt 2 .\)

Thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp của lăng trụ \(ABC.A'B'C'\) là:

\(V = \pi {R^2}h = \pi {\left( {HC} \right)^2}CC' = \pi {\left( {a\sqrt 2 } \right)^2}.2a = 4\pi {a^3}.\)

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hình chiếu của \(A\) lên \(BC.\) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(MP\) và \(HN.\)

Xem đáp án » 16/05/2022 888

Câu 2:

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}},\) biết tiếp tuyến có hệ số góc \(k = - 3\) 

Xem đáp án » 16/05/2022 190

Câu 3:

Cho biểu thức \(P = \frac{{{x^2} + xy + {y^2}}}{{x - xy + {y^2}}}\) với \({x^2} + {y^2} \ne 0.\) Tính giá trị nhỏ nhất của \(P.\) 

Xem đáp án » 16/05/2022 175

Câu 4:

Đường thẳng \(y = {m^2}\) cắt đồ thị hàm số \(y = {x^4} - {x^2} - 10\) tại hai điểm phân biệt \(A,B\) sao cho tam giác \(OAB\) vuông (với \(O\) là gốc tọa độ). Mệnh đề nào sau đây đúng?

Xem đáp án » 16/05/2022 172

Câu 5:

Cho hình hộp đứng BACD.A'B'C'D' có đáy là hình thoi cạnh a,BAD^=1200. Gọi \(G\) là trọng tâm của tam giác ABD, góc tạo bởi \(C'G\) và mặt đáy bằng \({30^0}.\) Tính theo \(a\) thể tích khối hộp ABCD.A'B'C'D'.

Xem đáp án » 16/05/2022 168

Câu 6:

Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh trong đó có đúng 2 học sinh nam? 

Xem đáp án » 16/05/2022 160

Câu 7:

Cắt hình nón \(S\) bởi một mặt phẳng đi qua trục của hình nón ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt 2 .\) Tính theo \(a\) thể tích của khối nón đã cho. 

Xem đáp án » 16/05/2022 137

Câu 8:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?B. \(a >0,b < 0,c >0,d >0\) (ảnh 1)

Xem đáp án » 16/05/2022 136

Câu 9:

Cho hình chữ nhật \(ABCD\) có \(AB = 5,BC = 4\).  Tính thể tích của khối lăng trụ tạo thành khi cho hình chữ nhật \(ABCD\) quay quanh \(AB.\)

Xem đáp án » 16/05/2022 132

Câu 10:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽHàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2021 -  (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2021 - 2020x}}{{2020}}\) đồng biến trên khoảng nào dưới đây? 

Xem đáp án » 16/05/2022 129

Câu 11:

Cho số thực dương \(a\) khác 1, biểu thức \(D = {\log _{{a^3}}}a\) có giá trị bằng bao nhiêu? 

Xem đáp án » 16/05/2022 124

Câu 12:

Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = \frac{2}{{ - x + 3}}?\) 

Xem đáp án » 16/05/2022 123

Câu 13:

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 20;2} \right]\) để hàm số y=x3x2+3mx1 đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 16/05/2022 123

Câu 14:

Đồ thị hàm số \(y = - {x^4} + {x^2} + 2\) cắt trục \(Oy\) tại điểm nào?

Xem đáp án » 16/05/2022 113

Câu 15:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - x - 2} \right)\left( {{x^3} - 6{x^2} + 11x - 6} \right).g\left( x \right)\) với \(g\left( x \right)\) là hàm đa thức có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - x - 2} \right)\left( {{x^3} - 6{x^2} + 11x - 6} \right).g\left( x \right)\ (ảnh 1)

Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị? 

Xem đáp án » 16/05/2022 113

Câu hỏi mới nhất

Xem thêm »
Xem thêm »