Cho hàm số \(y = {x^4} - 2m{x^2} + m,\) có đồ thị \(\left( C \right)\) với \(m\) là tham số thực. Gọi \(A\) là điểm thuộc đồ thị \(\left( C \right)\) có hoành độ bằng 1. Tìm \(m\) để tiếp tuyến \(\Delta \) với đồ thị \(\left( C \right)\) tại \(A\) cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
A.\( - \frac{{15}}{{16}}.\)
B. \(\frac{{15}}{{16}}.\)
C.\( - \frac{{17}}{{16}}.\)
D.\(\frac{{17}}{{16}}.\)
\(y' = 4{x^3} - 4mx,y'\left( 1 \right) = 4 - 4m,y\left( 1 \right) = 1 - m.\) Ta có điểm \(A\left( {1;1 - m} \right).\)
Phương trình tiếp tuyến của đồ thị \(\left( C \right)\) tại điểm \(A\left( {1;1 - m} \right)\) là
\(y = y'\left( 1 \right)\left( {x - 1} \right) + 1 - m \Rightarrow y = \left( {4 - 4m} \right)\left( {x - 1} \right) + 1 - m \Rightarrow y = \left( {4 - 4m} \right)x + 3m - 3\) suy ra phương trình tiếp tuyến là \(\left( {4 - 4m} \right)x - y + 3m - 3 = 0.\)
\(MN = 2MH = 2\sqrt {I{M^2} - I{H^2}} = 2\sqrt {4 - I{H^2}} \).
Ta có \(MN\) nhỏ nhất khi \(IH\) lớn nhất. Ta có \(IH = d\left( {I,\Delta } \right) = \frac{{\left| m \right|}}{{\sqrt {{{\left( {4 - 4m} \right)}^2} + 1} }}.\)
\(IH\) lớn nhất khi \(I{H^2}\) lớn nhất hay \(\frac{{{m^2}}}{{16{m^2} - 32m + 17}}\) lớn nhất.
Xét hàm \(f\left( m \right) = \frac{{{m^2}}}{{16{m^2} - 32m + 17}}\) suy ra \(f'\left( m \right) = \frac{{ - 32{m^2} + 34m}}{{{{\left( {16{m^2} - 32m + 17} \right)}^2}}}.\)
Từ bảng ta có \(IH\) lớn nhất khi \(m = \frac{{17}}{{16}}.\) Vậy dây cung \(MN\)nhỏ nhất khi \(m = \frac{{17}}{{16}}.\)
Đáp án D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\) có tập xác định là R.
Cho giới hạn \(\mathop {\lim }\limits_{x \to - 4} \frac{{{x^2} + 3x - 4}}{{{x^2} + 4x}} = \frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức \({a^2} - {b^2}.\)
Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ { - 2020;2020} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng \(1m\) và \(1,2m.\) Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thế tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây?
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2}\) tại 3 điểm phân biệt \(A,B,C\) \((B\) nằm giữa \(A\) và \(C)\) sao cho \(AB = 2BC.\) Tính tổng các phần tử thuộc \(S.\)
Cho đa giác lồi \({A_1}{A_2}...{A_{20}}.\) Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
Đạo hàm của hàm số \(y = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) tại điểm \(x = 1\) là \(y'\left( 1 \right) = a\ln 2 + b,\left( {a,b \in \mathbb{Z}} \right).\) Tính \(a - b.\)
Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC.\) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{{\sqrt 3 }}{6}?\)
Trên giá sách có 6 quyển sách toán khác nhau, 7 quyển sách văn khác nhau và 8 quyển sách Tiếng anh khác. Hỏi có bao nhiêu cách lấy 2 quyển thuộc 2 môn khác nhau?
Cho hình chóp \(S.ABC\) có \(AB = AC = 4,BC = 2,SA = 4\sqrt 3 ;\angle SAB = \angle SAC = {30^0}.\) Gọi \({G_1},{G_2},{G_3}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( {ABC} \right).\) Thể tích của khối chóp \(T.{G_1}{G_2}{G_3}\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P = 2a - b.\)
Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)
Số nghiệm của phương trình \({\log _{2020}}x + {\log _{2021}}x = 0\) là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \left[ { - 2021;2021} \right]\) để hàm số \(g\left( x \right) = f\left( {x + m} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right).\) Hỏi \(S\) có bao nhiêu phần tử?
Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm thuộc đồ thị hàm số \(y = {\log _3}x.\) Tìm điều kiện của \({x_0}\) để điểm \(M\) nằm phía trên đường thẳng \(y = 2.\)