Cho tứ diện \(ABCD\) có \(AB = CD.\) Mặt phẳng \(\left( \alpha \right)\) qua trung điểm của \(AC\) và song song với \(AB,CD\) cắt \(ABCD\) theo thiết diện là:
A. Hình vuông.
B. Hình thoi.
C. Hình tam giác.
D. Hình chữ nhật.
Đáp án B.
Gọi \(M\) là trung điểm của \(AC.\) Theo bài ta có \(M \in \left( \alpha \right).\)
Vì mặt phẳng \(\left( \alpha \right)\) qua trung điểm của \(AC\) và song song với \(AB,CD.\) Nên:
- Từ \(M,\) kẻ đường thẳng song song với \(AB,\) cắt \(BC\) tại \(Q,\) khi đó \(MQ\) là đường trung bình của \(\Delta ABC.\)
=>\[\left\{ \begin{array}{l}MQ//AB\\MQ = \frac{1}{2}AB\end{array} \right. = >Q\]là trung điểm của BC.
- Từ \(Q,\) kẻ đường thẳng song song với \(CD,\) cắt \(BD\) tại \(P.\) Tương tự ta cũng có \(\left\{ \begin{array}{l}QP//CD\\QP = \frac{1}{2}CD\end{array} \right.\) và \(P\) là trung điểm của \(BD.\)
- Từ \(M,\) kẻ đường thẳng song song với \(CD,\) cắt \(AD\) tại \(N.\) Tương tự ta cũng có \(\left\{ \begin{array}{l}MN//CD\\MN = \frac{1}{2}CD\end{array} \right.\) và \(N\) là trung điểm của \(AD.\) Khi đó suy ra \(NP//AB\) và \(\left\{ \begin{array}{l}NP//AB\\NP = \frac{1}{2}AB\end{array} \right.\).
Như vậy \(M,N,P,Q \in \left( \alpha \right),\left\{ \begin{array}{l}MQ//NP//AB\\MQ = NP = \frac{1}{2}AB\end{array} \right.\) và \(\left\{ \begin{array}{l}MN//PQ//CD\\MN = PQ = \frac{1}{2}CD\end{array} \right.\left( 1 \right).\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng.
Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 1;{u_4} = 64.\) Công bội \(q\) của cấp số nhân bằng
Cho đồ thị hai hàm số \(y = {a^x}\) và \(y = {\log _b}x\) như hình vẽ. Khẳng định nào sau đây đúng?
Tìm hoành độ các giao điểm của đường thẳng \(y = 2x - \frac{{13}}{4}\) với đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{x + 2}}.\)
Tổng các nghiệm của phương trình \(\log _2^2\left( {3x} \right) + {\log _3}\left( {9x} \right) - 7 = 0\) bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt {4 + 2f\left( {\cos x} \right)} } \right) = m\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right).\)
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên ở hình vẽ. Hàm số có giá trị cực tiểu bằng
Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a\sqrt 3 ,AC = AA' = a.\) Sin góc giữa đường thẳng \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng
Khoảng nghịch biến của hàm số \(y = {x^3} - 3x + 3\) là \(\left( {a;b} \right)\) thì \(P = {a^2} - 2ab\) bằng
Tập xác định của hàm số \(y = {\left( {{x^2} - x} \right)^{ - 3}}\) là: