IMG-LOGO

Câu hỏi:

07/07/2024 62

Cho các số thực dương \(a,b,x,y\) thỏa mãn \(a >1,b >1\) và \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}}.\) Giá trị nhỏ nhất của biểu thức \(P = 3x + 4y\) thuộc tập hợp nào dưới đây? 

A.\(\left( {7;9} \right].\)

Đáp án chính xác

B.\(\left( {11;13} \right).\)

C.\(\left( {1;2} \right).\)

D.\(\left[ {5;7} \right).\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Ta có \({a^{x - 1}} = {b^y} = \sqrt[3]{{ab}} \Leftrightarrow \left[ \begin{array}{l}x = 1 + \frac{1}{3}{\log _a}ab = \frac{4}{3} + \frac{1}{3}{\log _a}b\\y = \frac{1}{3}{\log _b}ab = \frac{1}{3}\left( {1 + {{\log }_b}a} \right) = \frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\end{array} \right..\)

Thay vào \(P,\)ta được

\(P = 3x + 4y = 3\left( {\frac{4}{3} + \frac{1}{3}{{\log }_a}b} \right) + 4.\frac{1}{3}\left( {1 + \frac{1}{{{{\log }_a}b}}} \right)\)

\( = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right)\)

Vì \(a >1,b >1\) nên \({\log _a}b >0.\) Áp dụng BĐT Cô-si, ta có:

\(P = \frac{{16}}{3} + \left( {{{\log }_a}b + \frac{4}{{3{{\log }_a}b}}} \right) \ge \frac{{16}}{3} + 2\sqrt {{{\log }_a}b.\frac{4}{{3{{\log }_a}b}}} = \frac{{16 + 4\sqrt 3 }}{3}.\)

Dấu “=” xảy ra khi và chỉ khi \({\log _a}b = \frac{4}{3}{\log _a}b \Leftrightarrow {\log _a}b = \frac{{2\sqrt 3 }}{3}.\)

Vậy giá trị nhỏ nhất của \(P\) bằng \(\frac{{16 + 4\sqrt 3 }}{3} \in \left( {7;9} \right].\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 5x + 4\) và trục \(Ox.\) Thể tích của khối tròn xoay sinh ra khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng:

Xem đáp án » 16/05/2022 143

Câu 2:

Số phức liên hợp của số phức \(4 - 3i\) là 

Xem đáp án » 16/05/2022 107

Câu 3:

Cho số phức \(z = \frac{{1 + 2i}}{{1 - i}}.\) Trong mặt phẳng tọa độ, điểm biểu diễn số phức \(z\) là điểm nào dưới đây? 

Xem đáp án » 16/05/2022 100

Câu 4:

Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:

Xem đáp án » 16/05/2022 100

Câu 5:

Cho khối nón có chu vi đáy \(8\pi \) và chiều cao \(h = 3.\) Thể tích khối nón đã cho bằng? 

Xem đáp án » 16/05/2022 97

Câu 6:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng

Xem đáp án » 16/05/2022 95

Câu 7:

Gọi \(M,N\) là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 1\) trên \(\left[ {0;2} \right].\) Khi đó \(M + N\) bằng

Xem đáp án » 16/05/2022 93

Câu 8:

Nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 2\) là

Xem đáp án » 16/05/2022 93

Câu 9:

Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(2a.\) Thể tích khối trụ bằng

Xem đáp án » 16/05/2022 91

Câu 10:

Tỉ lệ tăng dân số hàng năm của một quốc gia \(X\) là 0,2%. Năm 1998 dân số của quốc gia \(X\) là 125500000 người. Hỏi sau bao nhiêu năm thì dân số của quốc gia \(X\) là 140000000 người? 

Xem đáp án » 16/05/2022 89

Câu 11:

Đồ thị hàm số \(y = \frac{{x - 3}}{{6 - 3x}}\) có bao nhiêu tiệm cận đứng và tiệm cận ngang?

Xem đáp án » 16/05/2022 84

Câu 12:

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OB = OC = a\sqrt 6 ,OA = a.\) Thể tích khối tứ diện đã cho bằng

Xem đáp án » 16/05/2022 84

Câu 13:

Cho khối lăng trụ có diện tích đáy \(B = 8\) và chiều cao \(h = 6.\) Thể tích của khối lăng trụ đã cho bằng 

Xem đáp án » 16/05/2022 84

Câu 14:

Trong không gian \(Oxyz,\) cho điểm \(A\left( {4; - 1;3} \right)\) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}.\) Tọa độ điểm \(M\) là điểm đối xứng với điểm \(A\) qua \(d\) là

Xem đáp án » 16/05/2022 82

Câu 15:

Xét các số phức \(z\) thỏa mãn \(\left| {i\overline z + 3 - 2i} \right| = 4.\) Trên mặt phẳng tọa độ \(Oxy,\) tập hợp điểm biểu diễn số phức \(w = 2i\overline z + 5 - 6i\) là một đường tròn có tâm \(I\left( {a;b} \right)\), bán kính \(R.\) Tính \(T = a + b + R\) 

Xem đáp án » 16/05/2022 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »