Số giao điểm của đồ thị hàm số \(y = - {x^4} + 4{x^2} + 1\) và đồ thị hàm số \(y = {x^2} - 1\) là
A. 4.
B. 3.
C. 2.
D. 1.
Đáp án C.
Phương trình hoành độ giao điểm của đồ thị hàm số \(y = - {x^4} + 4{x^2} + 1\) và đồ thị hàm số \(y = {x^2} - 1\) là
\( - {x^4} + 4{x^2} + 1 = {x^2} - 1.\)
\( \Leftrightarrow {x^4} - 3{x^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{3 + \sqrt {17} }}{2}\\{x^2} = \frac{{3 - \sqrt {17} }}{2}\left( L \right)\end{array} \right. \Leftrightarrow x = \pm \sqrt {\frac{{3 + \sqrt {17} }}{2}} .\)
Vậy số giao điểm của đồ thị hàm số \(y = - {x^4} + 4{x^2} + 1\) và đồ thị hàm số \(y = {x^2} - 1\) là 2.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 5x + 4\) và trục \(Ox.\) Thể tích của khối tròn xoay sinh ra khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng:
Cho khối nón có chu vi đáy \(8\pi \) và chiều cao \(h = 3.\) Thể tích khối nón đã cho bằng?
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(2a.\) Thể tích khối trụ bằng
Cho số phức \(z = \frac{{1 + 2i}}{{1 - i}}.\) Trong mặt phẳng tọa độ, điểm biểu diễn số phức \(z\) là điểm nào dưới đây?
Trong không gian \(Oxyz,\) cho điểm \(A\left( {4; - 1;3} \right)\) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}.\) Tọa độ điểm \(M\) là điểm đối xứng với điểm \(A\) qua \(d\) là
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng
Gọi \(M,N\) là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 1\) trên \(\left[ {0;2} \right].\) Khi đó \(M + N\) bằng
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
Tỉ lệ tăng dân số hàng năm của một quốc gia \(X\) là 0,2%. Năm 1998 dân số của quốc gia \(X\) là 125500000 người. Hỏi sau bao nhiêu năm thì dân số của quốc gia \(X\) là 140000000 người?
Nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 2\) là
Cho khối lăng trụ có diện tích đáy \(B = 8\) và chiều cao \(h = 6.\) Thể tích của khối lăng trụ đã cho bằng
Đồ thị hàm số \(y = \frac{{x - 3}}{{6 - 3x}}\) có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Cho số phức \(z = 3 + 4i.\) Tìm phần thực \(a\) và phần ảo \(b\) của số phức \(z.\)
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OB = OC = a\sqrt 6 ,OA = a.\) Thể tích khối tứ diện đã cho bằng