Đồ thị hàm số \(y = {x^4} + 2m{x^2} + 3{m^2}\) có ba điểm cực trị lập thành tam giác nhận \(G\left( {0;7} \right)\) làm trọng tâm khi và chỉ khi
A.\(m = 1.\)
B.\(m = - \sqrt {\frac{3}{7}} \).
C.\(m = - 1.\)
D.\(m = - \sqrt 3 .\)
Đáp án D.
Ta có: \(y = {x^4} + 2m{x^2} + 3{m^2} \Rightarrow y' = 4{x^3} + 4mx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - m\end{array} \right..\)
Để đồ thị hàm số có ba điểm cực trị thì \(m < 0.\) Khi đó tọa độ ba điểm cực trị là: \(A\left( {0;3{m^2}} \right);B\left( { - \sqrt { - m} ;2{m^2}} \right);C\left( {\sqrt { - m} ;2{m^2}} \right).\)
Vì ba điểm cực trị lập thành tam giác nhận \(G\left( {0;7} \right)\) làm trọng tâm nên
\(\left\{ \begin{array}{l}3{x_G} = {x_A} + {x_B} + {x_C}\\3{y_G} = {y_A} + {y_B} + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 = 0\\7{m^2} = 21\end{array} \right. \Leftrightarrow {m^2} = 3 \Leftrightarrow m = \pm \sqrt 3 \) mà \(m < 0\) do đó \(m = - \sqrt 3 .\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\) có nghiệm \(x \in \left[ { - 1;2} \right].\) Tính tổng tất cả các phần tử của \(S.\)
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) tâm \(O.\) Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^0}.\) Tính góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\)?
Gọi \(S\) là tập các số tự nhiên có 6 chữ số được lập từ tập hợp \(A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}.\) Chọn ngẫu nhiên một số từ tập hợp \(S.\) Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 1400.
Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nàm dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Phương trình \(\frac{1}{2}{\log _{\sqrt 3 }}\left( {x + 3} \right) + \frac{1}{2}{\log _9}{\left( {x - 1} \right)^4} = 2{\log _9}\left( {4x} \right)\) có tất cả bao nhiêu nghiệm thực phân biệt?
Tập hợp tất cả các giá trị của tham số \(m\) để phương trình \({4^x} - m{.2^{x + 1}} + 3m - 3 = 0\) có hai nghiệm trái dấu là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Tiếp tuyến của đồ thị hàm số \(y = {x^3} + x - 3\) tại điểm \(M\left( {0; - 3} \right)\) có phương trình là
Cho \(a\) là số thực dương, \(a \ne 1,\) khi đó \({a^{3{{\log }_a}}}3\) bằng
Cho tập hợp \(A = \left\{ {0;1;2;3;4;5} \right\}.\) Số tập hợp con gồm hai phần tử của tập hợp \(A\) là
Cho khối chóp có diện tích đáy \(B = 5\) và chiều cao \(h = 6.\) Thể tích của khối chóp đã cho bằng
Hàm số nào sau đây không là nguyên hàm của hàm số \(y = \frac{{x\left( {2 + x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)?\)
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng \(2a,O\) là giao điểm của \(AC\) và \(BD.\) Gọi \(M\) là trung điểm \[{\rm{AO}}{\rm{.}}\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {SCD} \right)\) theo\(a?\)
Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng