Xếp 6 học sinh nam và 4 học sinh nữ ngồi vào một bàn tròn 10 ghế. Tính xác suất để không có hai học sinh nữ ngồi cạnh nhau.
A. 1/64
B.1/84
C.5/42
D.5/48
Chọn đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình hộp ABCD.A’B’C’D’. Mặt phẳng (AB’D’) song song với mặt phẳng nào sau đây?
Cho hàm số với m là tham số thực. Số giá trị nguyên không âm của m để hàm số đã cho có 3 điểm cực trị là
Cho hàm số y=f(x) có đạo hàm . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số có đúng một điểm cực trị?
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
Cho phương trình . Có bao nhiêu giá trị nguyên của tham số m ϵ [1;10] để phương trình có hai nghiệm trái dấu.
Trong mặt phẳng Oxy, đường thẳng d: x-2y-1=0 song song với đường thẳng có phương trình sau đây?
Cho hàm số có đồ thị là và điểm A(-1;2). Gọi S là tập hợp tất cả các giá trị thực của m để có đúng một tiếp tuyến của đi qua A. Tổng tất cả các phần tử của S bằng.
Biết , là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số y = (x+1)/(x-1) sao cho đoạn thẳng AB có độ dài nhỏ nhất. Tính .
Cho hàm số f(x) xác định trên R\{-1;1/2} và thỏa mãn và f(0) + 2f(1)=0. Giá trị của biểu thức f(-3) + f(-3) + f(-1/2) bằng:
Cho hàm số y = f(x). Hàm số y = f’(x) có
đồ thị như hình vẽ. Hàm số y = f(lnx +1) nghịch biến
trên khoảng
Trong mặt phẳng (Oxy), cho điểm M(2;1). Đường thẳng d đi qua M, cắt tai Ox, Oy lần lượt tại A và B ( A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là: