Tìm tổng các nghiệm của phương trình sau:
A. 0
B. -1
C. 2
D. 3
Đáp án C
Phương pháp:
Biến đổi phương trình đã cho về và đặt ẩn phụ đưa về phương trình ẩn t.
Xét hàm và tìm nghiệm của từ đó tìm ra nghiệm của phương trình.
Cách giải:
Phương trình (1):
Điều kiện:
Vì
Đặt
Phương trình (*) trở thành:
Xét hàm số trên
Có
Vì nên
đồng biến trên
Bảng biến thiên:
Mà là nghiệm duy nhất phương trình
Với
Theo định lý vi – et ta có tổng hai nghiệm phương trình (1) là:
Chú ý khi giải:
HS cần chú ý sử dụng phương pháp xét tính đơn điệu của hàm số để giải phương trình.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho a, b, c là ba số thực dương, khác 1 và . Biết và Khi đó, giá trị của bằng bao nhiêu?
Cho hàm số xác định, liên tục và có đạo hàm trên đoạn Xét các khẳng định sau:
1. Hàm số đồng biến trên thì
2. Giả sử suy ra hàm số nghịch biến trên
3. Giả sử phương trình có nghiệm là khi đó nếu hàm số đồng biến trên thì hàm số nghịch biến trên
4. Nếu , thì hàm số đồng biến trên
Số khẳng định đúng trong các khẳng định trên là
Cho khối chóp S.ABC có thể tích là . Tam giác SAB có diện tích là . Tính khoảng cách d từ C đến mặt phẳng (SAB).
Một người gửi số tiền 100 triệu đồng vào một ngân hàng với lãi suất 7,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngan hàng thì cứ sau mỗi năm, số tiền sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Để lãnh được số tiền ít nhất 250 triệu thì người đó cần gửi trong khoảng thời gian bao nhiêu năm? (nếu trong khoảng thời gian này không rút tiền ra và lãi suất không thay đổi)
Cho phương trình:
(với m là tham số). Gọi là tập các giá trị của m để phương trình có nghiệm trên đoạn . Tính a+b.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số: Giá trị M+n bằng: