Phương trình: có nghiệm x khi:
A.
B.
C.
D.
Đáp án B
Phương pháp:
- Chia cả hai vế của phương trình cho và đặt ẩn phụ .
- Từ điều kiện ta tìm được điều kiện của t là .
- Từ phương trình ẩn t, rút và xét hàm trên , từ đó suy ra điều kiện của
Cách giải:
Phương trình: (Điều kiện: )
Ta có với Chia hai vế phương trình (*) cho ta có:
Đặt
Với thì hàm số
Phương trình (1) trở thành:
Phương trình (*) có nghiệm phương trình (2) có nghiệm:
Xét hàm trên ta có:
Bảng biến thiên:
Từ bảng biến thiên ta thấy để phương trình có nghiệm trong thì đường thẳng phải cắt đồ thị hàm số tại ít nhất 1 điểm.
Do đó
Vậy thì phương trình đã cho có nghiệm.
Đáp án B.
Chú ý khi giải:
- HS thường quên không tìm điều kiện của ẩn phụ hoặc tìm sai điều kiện (một số bạn chỉ đặt điều kiện sẽ dẫn đến kết quả sai) t t 0
- Ở bước kết luận, một số bạn nhầm lẫn điều kiện để có nghiệm và có 2 nghiệm nên sẽ chọn để phương trình có 2 nghiệm cũng là một kết quả sai. 1 0 m 3
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho a, b, c là ba số thực dương, khác 1 và . Biết và Khi đó, giá trị của bằng bao nhiêu?
Cho hàm số xác định, liên tục và có đạo hàm trên đoạn Xét các khẳng định sau:
1. Hàm số đồng biến trên thì
2. Giả sử suy ra hàm số nghịch biến trên
3. Giả sử phương trình có nghiệm là khi đó nếu hàm số đồng biến trên thì hàm số nghịch biến trên
4. Nếu , thì hàm số đồng biến trên
Số khẳng định đúng trong các khẳng định trên là
Cho khối chóp S.ABC có thể tích là . Tam giác SAB có diện tích là . Tính khoảng cách d từ C đến mặt phẳng (SAB).
Một người gửi số tiền 100 triệu đồng vào một ngân hàng với lãi suất 7,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngan hàng thì cứ sau mỗi năm, số tiền sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Để lãnh được số tiền ít nhất 250 triệu thì người đó cần gửi trong khoảng thời gian bao nhiêu năm? (nếu trong khoảng thời gian này không rút tiền ra và lãi suất không thay đổi)
Cho phương trình:
(với m là tham số). Gọi là tập các giá trị của m để phương trình có nghiệm trên đoạn . Tính a+b.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số: Giá trị M+n bằng: