Thứ năm, 23/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 7,331

Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

A. 25

Đáp án chính xác

B. 120

C. 35

D. 110

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là: n(Ω)=6!

Gọi biến cố A : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh  nam thứ  2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có  2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

nA =6.4.2.3!=288 cách.

⇒P(A)=2886!=25

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

4

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của  đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.

Xem đáp án » 03/08/2021 5,816

Câu 2:

Một con xúc sắc cân đối, đồng chất được gieo 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là:

Xem đáp án » 03/08/2021 4,680

Câu 3:

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1,2,3,4,5,6,7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng

Xem đáp án » 03/08/2021 3,322

Câu 4:

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

Xem đáp án » 03/08/2021 2,374

Câu 5:

Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách để lấy kết quả thu được là một số chia hết cho 3?

Xem đáp án » 03/08/2021 2,237

Câu 6:

Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván

Xem đáp án » 03/08/2021 1,874

Câu 7:

Cho tập hợp A={1;2;3;4;5;6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng

Xem đáp án » 03/08/2021 931

Câu 8:

Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng:

Xem đáp án » 03/08/2021 896

Câu 9:

Gọi S là tập các số tự nhiên gồm 9 chữ số được lập từ tập X={6;7;8},trong đó chữ số 6 xuất hiện 2 lần, chữ số 7 xuất hiện 3 lần, chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S; tính xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6.

Xem đáp án » 03/08/2021 628

LÝ THUYẾT

I. Định nghĩa cổ điển của xác suất.

Giả sử A là biến cố liên quan đến một phép thử với không gian mẫu chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Ta gọi tỉ số n(A)n(Ω) là xác suất của biến cố A, kí hiệu là P(A).  Vậy  P(A) = n(A)n(Ω).

- Chú ý: n(A) là số phần tử của A hay cũng là số các kết quả thuận lợi cho biến cố A, còn nΩ là số các kết quả có thể xảy ra của phép thử.

- Ví dụ 1. Gieo con súc sắc cân đối và đồng chất liên tiếp hai lần. Biến cố A: “Lần đầu xuất hiện mặt 3 chấm”.  Tính n(A), P(A).

Lời giải:

Gieo con súc sắc liên tiếp 2 lần, khi đó: nΩ=6.6=36.

Các kết quả thuận lợi cho A là:

A = {(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)}.

Do đó; n(A) = 6.

Khi đó xác suất để xảy ra biến cố A là PA=nAnΩ=636=16.

- Ví dụ 2. Gieo một đồng tiền liên tiếp ba lần. Gọi B là biến cố: lần gieo thứ nhất và thứ hai giống nhau. Tính n(B), P(B)?

Lời giải:

Gieo một đồng tiền liên tiếp ba lần, khi đó: nΩ=23=8.

Các kết quả thuận lợi cho biến cố B là:

B = {SSS; SSN; NNN; NNS}.

Do đó; n(B) = 4.

Vậy xác suất để xảy ra biến cố B là PB=nBnΩ=48=12.

II. Tính chất của xác suất

Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, ta có định lí sau:

a) P()=​​  0;  P(Ω)=1.

b) 0 ≤ P(A) ≤ 1 , với mọi biến cố A.

c) Nếu A và B xung khắc thì:

P(AB)  =  P(A)  +  P(B) (công thức cộng xác suất )

- Hệ quả: Với mọi biến cố A, ta có: P(A¯)  =1P(A).

- Ví dụ 3. Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:

Lời giải:

Phép thử : Gieo đồng tiền 5 lần cân đối và đồng chất

Ta có :n(Ω)=25=32 .

Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

Biến cố đốiA¯ tất cả đều là mặt ngửa.

Chỉ có duy nhất một trường hợp tất cả các mặt đều ngửa nên n(A¯)=1

Suy ra: n(A)=n(Ω)n(A¯)=31

Xác suất của biến cố A là P(A)=  n(A)n(Ω)  =  3132.

- Ví dụ 4. Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Tính xác suất của biến cố “lấy lần thứ hai được một viên bi xanh”.

Lời giải:

Gọi A là biến cố “lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra

- Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh.

Xác suất trong trường hợp này là PB=58.47  =  514

- Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh.

Xác suất trong trường hợp này là PC  =  38.57  =  1556

- Vì 2 biến cố B và C là xung khắc nên PA = PB + PC = 0,625.

III. Các biến cố độc lập, công thức nhân xác suất.

- Nếu sự xảy ra của một biến cố không ảnh hưởng đến xác suất xảy ra của một biến cố khác thì ta nói hai biến cố đó độc lập.

- Tổng quát:

 A và B là hai biến cố độc lập khi và chỉ khi: P(A.B) = P(A).P(B).

- Ví dụ 5. Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng  đích lần lượt là 0,8 ; 0,6; 0,6. Xác suất để có đúng 2 người bắn trúng đích bằng:

Lời giải:

Gọi X là biến cố: “có đúng 2 người bắn trúng đích”.

- Gọi A là biến cố: “người thứ nhất bắn trúng đích”, P(A)=0,8;  P(A¯)  =  0,2

- Gọi B là biến cố: “người thứ hai bắn trúng đích”, P(B)=0,6;  P(B¯)  =  0,4.

- Gọi C là biến cố: “người thứ ba bắn trúng đích”, P(C)=0,6;  P(C¯)  =  0,4

Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:

P(X)=PA.B.C¯+P(A.B¯.C)+P(A¯.B.C)

= 0,8.0,6.0.4 + 0,8.0,4.0,6 + 0,2.0,6.0,6 = 0,456.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »