Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a, AD=2a vuông góc với mặt phẳng đáy và SA=a. Tính theo a khoảng cách giữa hai đường thẳng AC và SD
A.
B.
C.
D.
Cách 1:
Gọi I là trung điểm của cạnh AD.
vuông cân tại B, vuông cân tại I và có AB=IC=a nên
Khi đó nên vuông cân tại C.
Trong (ABCD), dựng hình vuông ACDE. Trong , kẻ
Ta có
Từ (1) và (2) suy ra
Vì nên
Trong
Vậy
Cách 2:
Dễ thấy . Trên mặt phẳng (ABCD)
dựng:
Dễ dàng chứng minh được: S.AED là tam diện vuông (1)
Tính được: AE=AD=2a.
Mà
Với AH là đoạn thẳng dựng từ A vuông góc với mặt phẳng (ADE)
Ta có:
Cách 3:
Gắn hệ trục tọa độ Oxyz
Khi đó
Do đó ;
và
Ta có
Chọn đáp án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y=f(x). Hàm số y=f '(x) có bảng biến thiên như hình vẽ dưới
Giá trị lớn nhất của hàm số trên [-1;1]
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ bên. Người ta chia elip bởi parabol có đỉnh , trục đối xứng và đi qua các điểm M, N. Sau đó sơn phần tô đậm với giá 200.000 đồng/ m2 và trang trí đen led phần còn lại với giá 500.000 đồng/ m2 . Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng .
Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với trục Oz?
Giả sử hàm f có đạo hàm cấp n trên R, và với mọi . Tính tích phân
Cho hàm số f(x) liên tục trên có f(0)=0 và đồ thị hàm số như hình vẽ bên
Hàm số đồng biến trên khoảng
Trong không gian Oxyz, cho mặt cầu và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn . Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa , kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn . Biết rằng khi và có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó
Cho hàm số y=f(x) liên tục, nhận giá trị dương trên R và có bảng xét dấu đạo hàm như dưới đây
Hàm số đồng biến trên khoảng
Cho số thực m và hàm số y=f(x) có đồ thị như hình vẽ. Phương trình nhiều nhất bao nhiêu nghiệm phân biệt thuộc đoạn [-1;2]?
Biết tập hợp nghiệm của bất phương trình là khoảng (a;b). Giá trị a+b là
Trong không gian Oxyz, cho đường thẳng và mặt phẳng . Góc giữa đường thẳng và mặt phẳng bằng
Có bao nhiêu giá trị nguyên của m để phương trình =0 có đúng 3 nghiệm thực phân biệt
Giả sử m là số thực thỏa mãn giá trị nhỏ nhất của hàm số trên là 2
Cho hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu số nguyên m để bất phương trình nghiệm đúng với mọi ?