Một tổ có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho hai người được chọn là nữ
A.
B.
C.
D.
Đáp án A
Không gian mẫu là “Chọn ngẫu nhiên 2 người từ 10 học sinh trong tổ đó”. Suy ra số phần tử trong không gian mẫu là .
Gọi A là biến cố “2 người được chọn là nữ” thì kết quả thuận lợi cho biến cố A là .
Vậy xác suất cần tính là
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho đa giác lồi (H) có 22 cạnh. Gọi X là tập hợp của các tam giác có 3 đỉnh là ba đỉnh của (H). Chọn ngẫu nhiên hai tam giác trong X. Tính xác suất để chọn được 1 tam giác có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H) (Kết quả làm tròn đến số thập phân thứ ba)
Gọi tên hình tròn xoay biết nó sinh ra bởi nửa đường tròn khi quay quanh trục quay là đường kính của nửa đường tròn đó
Cho dãy số tăng a, b, c theo thứ tự thành lập cấp số nhân, đồng thời tạo thành cấp số cộng và lập thành cấp số nhân. Khi đó giá trị của bằng
Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi là thể tích khối chứa điểm A’ và là thể tích khối chứa điểm C’. Khi đó là
Cho hai số thực a,b thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
Cho các số thực dương a,b thỏa mãn và . Khẳng định nào sau đây là đúng?
Cho hàm số , đạo hàm của hàm số ứng với số gia của đối số x tại x0 là
Trong trung tâm công viên có một khuôn viên hình elip có độ dài trục lớn 16m, độ dài trụ nhỏ bằng 10m. Giữa khuôn viên là một cái đài phun nước hình tròn có đường kính bằng 8m, phần còn lại của khuôn viên người ta thả cá. Số cá thả vào khuôn viên đó gần nhất với số nào dưới đây? Biết rằng mật độ thả cá là 5 con trên 1 mặt nước
Cho tứ diện ABCD có Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là