Cho hàm số có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.
Đáp án C.
Đồ thị hàm bậc bốn trùng phương có dạng chữ M nên suy ra a <0 .
Đồ thị hàm số cắt trục Oy tại điểm (0;c) nên suy ra c < 0.
Hàm số có ba cực trị nên suy ra ab < 0 , (a, b trái dấu). Mà a < 0 nên suy ra b > 0.
Vậy C là đáp án đúng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có 8 người ngồi xung quanh một chiếc bàn tròn. Mỗi người cầm một đồng xu cân đối, đồng chất. Cả 8 người đồng thời tung đồng xu. Ai tung được mặt ngửa thì phải đứng dậy, ai tung được mặt sấp thì ngồi yên tại chỗ. Tính xác suất sao cho không có hai người nào ngồi cạnh nhau phải đứng dậy?
Gọi n là tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số . Tìm n.
Một đa giác đều có 54 đường chéo. Tính số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đó.
Người ta đặt một khối chóp tứ giác đều lên trên một khối lập phương để thu được một khối mới như trong hình. Tính thể tích V của khối mới thu được?
Cho tam giác ABC đều cạnh a quay xung quanh đường cao AH tạo nên một hình nón. Tính diện tích xung quanh S của hính nón.
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với và . Mệnh đề nào dưới đây sai?
Cho hai số phức và . Gọi là số phức thỏa mãn . Tìm , biết biểu thức đạt giá trị nhỏ nhất
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và điểm . Viết phương trình mặt phẳng , biết rằng điểm B thuộc mặt cầu (S), có hoành độ dương và tam giác OAB đều.
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có và . Tìm tọa độ trọng tâm G của tam giác ABC
Cho số phức . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức liên hợp của số phức z?
Sau một trận mưa, cứ một mét vuông mặt đất thì hứng một lít rưỡi nước mưa rơi xuống. Hỏi mực nước trong một bể bơi ngoài trời tăng lên bao nhiêu sau trận mưa?
Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số đôi một khác nhau. Hỏi trong số đó có bao nhiêu số nhỏ hơn 432000?
Có 16 đội bóng tham gia thi đấu. Hỏi cần phải tổ chức bao nhiêu trận đấu sao cho hai đội bất kì đều gặp nhau đúng một lần?