Thứ bảy, 22/02/2025
IMG-LOGO

Câu hỏi:

04/07/2024 124

Cho tứ diện đều \[ABCD\] có cạnh bằng \[a\]. Gọi \[M,\,\,N\] lần lượt là trung điểm của các cạnh \[AB,\,\,BC\] và \[E\] là điểm đối xứng với \[B\]qua \[D\]. Mặt phẳng \[\left( {MNE} \right)\] chia khối tứ diện \[ABCD\] thành hai khối đa diện. Trong đó, khối tứ diện \[ABCD\]có thể tích là \[V\], khối đa diện chứa đỉnh \[A\] có thể tích \[V'.\] Tính tỉ số \(\frac{{V'}}{V}\).

A. \(\frac{7}{{18}}\).

B. \(\frac{{11}}{{18}}\).

Đáp án chính xác

C. \(\frac{{13}}{{18}}\).

D. \(\frac{1}{{18}}\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Gọi \(P = EN \cap CD\)và \(Q = EM \cap AD\).

Suy ra \[P,{\rm{ }}Q\] lần lượt là trọng tâm của \[\Delta BCE\]và \[\Delta ABE\].

Gọi \[S\] là diện tích tam giác \[BCD\], suy ra \({S_{\Delta CDE}} = {S_{\Delta BNE}} = S.\)

Ta có \[{S_{\Delta PDE}} = \frac{1}{3}.{S_{\Delta CDE}} = \frac{S}{3}.\]

Cho tứ diện đều ABCDcó cạnh bằng a. Gọi M,N lần lượt là trung điểm của các cạnh  (ảnh 1)

Gọi \[h\] là chiều cao của tứ diện \[ABCD\], suy ra

\[d\left[ {M,\left( {BCD} \right)} \right] = \frac{h}{2};{\rm{ }}\,d\left[ {Q,\left( {BCD} \right)} \right] = \frac{h}{3}.\]

Khi đó \[{V_{M.BNE}} = \frac{1}{3}{S_{\Delta BNE}}.d\left[ {M,\left( {BCD} \right)} \right] = \frac{{S.h}}{6};\]\[{V_{Q.PDE}} = \frac{1}{3}{S_{\Delta PDE}}.d\left[ {Q,\left( {BCD} \right)} \right] = \frac{{S.h}}{{27}}.\]

Suy ra \[{V_{PQD.NMB}} = {V_{M.BNE}} - {V_{Q.PDE}} = \frac{{S.h}}{6} - \frac{{S.h}}{{27}} = \frac{{7S.h}}{{54}} = \frac{7}{{18}}.\frac{{S.h}}{3} = \frac{7}{{18}}.{V_{ABCD}}\]

\[ \Rightarrow V' = V - \frac{7}{{18}}.{V_{}} = \frac{{11}}{{18}}V \Rightarrow \frac{{V'}}{V} = \frac{{11}}{{18}}\].

Vậy \(\frac{{V'}}{V} = \frac{{11}}{{18}}\).

Chọn đáp án B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 Cho\[x\], \[y\], \[z\] là các số thực khác \[0\]thỏa mãn\[{2^x} = {3^y} = {6^{ - z}}\]. Tính giá trị biểu thức \[M = xy + yz + zx\].

Xem đáp án » 20/05/2022 203

Câu 2:

Tập nghiệm của bát phương trình \({3^{2x - 3}} >27\) là

Xem đáp án » 20/05/2022 182

Câu 3:

Xét \(\int\limits_0^{\frac{\pi }{2}} {\sin x\sqrt {3 + \cos x} } {\rm{d}}x\), nếu đặt \(t = \sqrt {3 + \cos x} \) thì \(\int\limits_0^{\frac{\pi }{2}} {\sin x\sqrt {3 + \cos x} } {\rm{d}}x\) bằng

Xem đáp án » 20/05/2022 175

Câu 4:

Có 9 chiếc nghế được xếp thành một hàng ngang. Xếp ngẫu nhiên 9 học sinh gồm 5 học sinh lớp A, 3 học sinh lớp B và 1 học sinh lớp C ngồi vào hàng ghế đó sao cho mỗi ghế có đúng một học sinh. Xác xuất để học sinh lớp C ngồi giữa hai học sinh lớp B là:

Xem đáp án » 20/05/2022 165

Câu 5:

Tập nghiệm của bất phương trình \({3.9^x} - {10.3^x} + 3 \le 0\) có dạng\[S = \left[ {a;b} \right]\], trong đó \[a,b\] là các số nguyên. Giá trị của biểu thức \[5b - 2a\] bằng

Xem đáp án » 20/05/2022 164

Câu 6:

Trong không gian \[Oxyz\], cho mặt phẳng\((\alpha ):2x + y - z + 1 = 0\). Vectơ nào sau đây không là vectơ pháp tuyến của mặt phẳng \[(\alpha )\]?

Xem đáp án » 20/05/2022 147

Câu 7:

Bất phương trình sau có tất cả bao nhiêu nghiệm nguyên \({4^x} - {33.2^x} + 32 \le 0\).

Xem đáp án » 20/05/2022 144

Câu 8:

Gọi \({z_1}\) là nghiệm phức có phần ảo âm của phương trình \({z^2} - 2z + 5 = 0\). Tìm tọa độ điểm biểu diễn số phức \(\frac{{7 - 4i}}{{{z_1}}}\) trên mặt phẳng phức?

Xem đáp án » 20/05/2022 134

Câu 9:

Hỏi có bao nhiêu cách xếp bốn bạn An, Bình, Cường, Dũng ngồi vào một bàn học gồm bốn chỗ?

Xem đáp án » 20/05/2022 128

Câu 10:

Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:

Xem đáp án » 20/05/2022 127

Câu 11:

Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).

Xem đáp án » 20/05/2022 126

Câu 12:

Có bao nhiêu giá trị nguyên của tham số \(m\) trên \(\left[ { - 2020;{\rm{ }}2020} \right]\) để hàm số \(y = {\log _{2020}}\left( {{x^2} - 2x - m + 1} \right)\) có tập xác định là \(\mathbb{R}\)?

Xem đáp án » 20/05/2022 120

Câu 13:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^2 {f\left( x \right)} \,{\rm{d}}x = 9;\int\limits_2^4 {f\left( x \right)\,} {\rm{d}}x = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} \,{\rm{d}}x\)?

Xem đáp án » 20/05/2022 119

Câu 14:

Cho hàm số bậc ba \[y = f\left( x \right)\] có đồ thị như hình vẽ.

Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ.Phương trình f(2cosx)=2 có bao nhiêu nghiệm  (ảnh 1)

Phương trình \[f\left( {2\cos x} \right) = 2\] có bao nhiêu nghiệm \[x \in \left[ {0;3\pi } \right]\]?

Xem đáp án » 20/05/2022 114

Câu 15:

Đường thẳng đi qua điểm \(M\left( {3;2;1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 4 = 0\) có phương trình là

Xem đáp án » 20/05/2022 109

Câu hỏi mới nhất

Xem thêm »
Xem thêm »