Cho hàm số thỏa mãn , Số điểm cực trị của hàm số là
A.
B.
C.
D.
Chọn B
Xét hàm số .
Hàm số liên tục trên .
Vì
phương trình có ít nhất 1 nghiệm thuộc
Đồ thị hàm số có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng (1)
Vì phương trình có ít nhất 1 nghiệm thuộc
Đồ thị hàm số có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng (2)
Vì phương trình có ít nhất 1 nghiệm thuộc
Đồ thị hàm số có ít nhất một giao điểm với trục hoành có hoành độ nằm trong khoảng (3)
Và hàm số là hàm số bậc 3
Nên từ (1), (2), (3) đồ thị hàm số có dạng
Do đó đồ thị hàm số có dạng
Vậy hàm số có 5 điểm cực trị
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ sao cho các quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp xúc với đường sinh của hình trụ (tham khảo hình vẽ). Biết thể tích khối trụ là 120 cm3, thể tích của mỗi khối cầu bằng
Trong không gian , mặt cầu có tâm và tiếp xúc mặt phẳng có phương trình là:
Cho hàm số có đồ thị như hình dưới đây
Có tất cả bao nhiêu giá trị nguyên của tham số để phương trình có nghiệm phân biệt
Cho là đường thẳng đi qua điểm và vuông góc với mặt phẳng . Phương trình chính tắc của là
Trong không gian cho điểm . Mặt phẳng đi qua và cắt chiều dương của các trục lần lượt tại các điểm thỏa mãn và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính
Cho hàm số có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong không gian cho mặt phẳng và đường thẳng . Mệnh đề nào sau đây đúng ?
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng và biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình chữ nhật có hai kích thước là
Cho hình chóp tam giác có vuông góc với mặt phẳng Tam giác đều, cạnh Góc giữa và mặt phẳng bằng:
Trong không gian , cho đường thẳng . Một vectơ chỉ phương của là
Cho không gian , cho điểm và hai đường thẳng , . Viết phương trình mặt phẳng đi qua và song song với hai đường thẳng .