Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4% /tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.424.000 đồng.
B. 102.423.000 đồng.
C. 102.016.000 đồng.
D. 102.017.000 đồng.
Đáp án A.
Công thức lãi kép
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm thực?
Trong không gian Oxyz, cho hai đường thẳng , và (P): x+2y+3z-5=0. Đường thẳng vuông góc với (P) và cắt có phương trình là:
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;1); B(3;-1;1); C(-1;-1;1). Gọi là mặt cầu có tâm A, bán kính bằng 2; là hai mặt cầu có tâm lần lượt là B, C và bán kính đều bằng 1. Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu
Với n là số nguyên dương thỏa mãn số hạng không chứa x trong khai triển của biểu thức bằng:
Xét số phức thỏa mãn điều kiện . Tính P=a+b khi biểu thức |z+1-3i|+|z-1+i| đạt giá trị lớn nhất.
Trong không gian Oxyz, cho ba điểm M(2;0;0); N(0;-1;0); P(0;0;2). Mặt phẳng (MNP) có phương trình là:
Trong không gian Oxyz, cho điểm A(3;-1;1) Hình chiếu vuông góc của A lên mặt phẳng Oyz là điểm:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C sao cho OA=OB=OC0?
Gọi là hai nghiệm phức của phương trình . Giá trị của biểu thức bằng:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có và AA'=2. Gọi M, N, P lần lượt là trung điểm của các cạnh A'B', A'C' và BC. Côsin của góc tạo bởi hai mặt phẳng (AB'C') và (MNP) bằng: