Cho khối tứ diện đều ABCD. Gọi M,N lần lượt là trung điểm của AB,CD. Sử dụng mặt phẳng trung trực của AB và mặt phẳng trung trực của CD ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?
Phương pháp:
Sử dụng khái niệm mặt phẳng trung trực của đoạn thẳng là mặt phẳng vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.
Cách giải:
Vì ABCD là tứ diện đều nên các mặt của nó là tam giác đều.
Ta có: tại là mặt phẳng trung trực của AB
Chứng minh tương tự ta có (NAB) là mặt phẳng trung trực của CD.
Khi đó (MCD),(NAB) chia khối tứ diện thành bốn khối tứ diện: .
Chọn B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tính thể tích của khối cầu biết chu vi đường tròn lớn của nó bằng
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn (tham khảo hình bên dưới)
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất là (làm tròn đến hàng đơn vị)
Cho hàm số bậc ba có đồ thị như hình vẽ sau. Có bao nhiêu số dương trong các số a,b,c,d?
Một đoàn tàu gồm 12 toa chở khách (mỗi toa có thể chứa tối đa 12 khách). Có 7 hành khách chuẩn bị lên tàu. Tính xác suất để đúng 3 toa có người (làm tròn đến chữ số thập phân thứ ba)
Với mọi hàm số f(x);g(x) liên tục trên cho các khẳng định sau:
(I)
(II)
(III) Nếu thì
(IV) với mọi hằng số
Có bao nhiêu khẳng định sai?
Cho hàm số là các tham số thực). Hỏi đồ thị hàm số đã cho có tối đa bao nhiêu đường tiệm cận (ngang và đứng)?