Trong trường hợp phương trình có hai nghiệm phân biệt. Hai nghiệm của phương trình là?
A.
B.
C.
D.
Phương trình x2 – 2(m – 2)x + 2m − 5 = 0
có a = 1; b’ = − (m – 2); c = 2m – 5
Suy ra =[− (m – 2)]2 – 1.(2m − 5) = m2 – 6m + 9 = (m – 3)2
Để phương trình có hai nghiệm phân biệt thì
> 0(m – 3)2 > 0
Khi đó, phương trình có hai nghiệm phân biệt là:
x1 = m – 2 + = 2m – 5
x2 = m – 2 − = 1
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình với a, b, c là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?
Cho phương trình . Với giá trị nào dưới đây của m thì phương trình không có hai nghiệm phân biệt
Cho phương trình . Tìm các giá trị của m để phương trình vô nghiệm
Tìm m để phương trình mx2 – 2(m – 1)x + 2 = 0 có nghiệm kép và tìm nghiệm kép đó
Cho phương trình với a, b, c là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?
Cho phương trình có biệt thức ; Phương trình đã cho vô nghiệm khi?
Cho phương trình a có biệt thức ; Phương trình đã cho có hai nghiệm phân biệt khi?
Cho phương trình . Tìm các giá trị của m để phương trình vô nghiệm
Cho phương trình . Tìm các giá trị của m để phương trình có hai nghiệm phân biệt
1. Công thức nghiệm thu gọn
a) Biệt thức
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b’ ta có biệt thức như sau:
= b’2 - ac
Ta sửa dụng biết thức để giải phương trình bậc hai.
b) Công thức nghiệm thu gọn của phương trình bậc hai
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) có b = 2b’ và biệt thức = b’2 - ac
+ Nếu > 0 thì phương trình có hai nghiệm phân biệt là
+ Nếu = 0 thì phương trình có nghiệm kép là
+ Nếu < 0 thì phương trình vô nghiệm.