Cho hàm số Khẳng định nào sau đây là đúng?
A. Hàm số có 3 điểm cực trị
B. Hàm số chỉ có đúng 2 cực trị
C. Hàm số không có cực trị
D. Hàm số chỉ có đúng 1 điểm cực trị
Chọn D
Vậy hàm số đã cho có đúng 1 cực trị.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Cho hàm số f(x), đồ thị hàm số y=f'(x) là đường cong trong hình bên. Giá trị lớn nhất của hàm số trên đoạn [0;2] bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA=2a. Thể tích khối chóp S.ABCD bằng
Cho các số thực x,y,z thỏa mãn . Có bao giá trị nguyên của z để có đúng hai cặp (x;y) thỏa mãn đẳng thức trên
Cho hình trụ có độ dài đường sinh bằng 6, diện tích xung quanh bằng . Bán kính hình tròn đáy của hình trụ đó bằng
Từ một tấm thép phẳng hình chữ nhật, người ta muốn làm một chiếc thùng đựng dầu hình trụ bằng cách cắt ra hai hình tròn bằng nhau và một hình chữ nhật (phần tô đậm) sau đó hàn kín lại, như trong hình vẽ dưới đây. Hai hình tròn làm hai mặt đáy, hình chữ nhật làm thành mặt xung quanh của thùng đựng dầu (vừa đủ). Biết rằng đường tròn đáy ngoại tiếp một tam giác có kích thước là 50cm, 70cm, 80cm(các mối ghép nối khi gò hàn chiếm diện tích không đáng kể. Lấy ). Diện tích của tấm thép hình chữ nhật ban đầu gần nhất với số liệu nào sau đây?
Cho hàm số y=f(x) có bảng biến thiên như hình dưới:
Giá trị cực đại của hàm số đã cho là:
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên. Hàm số y=f(x) nghịch biến trên khoảng nào trong các khoảng sau đây?
Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí và 2 quyển sách Hóa, lấy ngẫu nhiên 3 quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán
Trong không gian Oxyz, cho hai điểm A(-2;1;1); B(0;-1;1). Phương trình mặt cầu đường kính AB là: