Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm A(-2;0),B(-2;2), C(4;2), D(4;0). Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M(x;y) mà x+y<2.
A.
B.
C.
D.
Đáp án A
Để con châu chấu đáp xuống các điểm M(x;y) có x+y<2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M(x;y) có tọa độ nguyên thì x thuộc {-2;-1;0;1;2}
Nếu x thuộc {-2;-1} thì y thuộc {0;1;2} => có 2.3 = 6 điểm.
Nếu x=0 thì y thuộc {0;1} => có 2 điểm.
Nếu x=1=> y=0 => có 1 điểm.
=> Có tất cả 6 + 2 + 1 = 9 điểm.
Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x thuộc {-2;-1;0;1;2;3;4}, y thuộc {0;1;2}
Số điểm M(x;y) có tọa độ nguyên là: 7.3 = 21 điểm.
Xác suất cần tìm là: P=.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu số nguyên M thuộc khoảng (-10;10) để hàm số y=|2x2-2mx+3| đồng biến trên ()?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Hình chiếu vuông góc của S trên AB là điểm H thỏa mãn AH=2BH. Tính theo thể tích V của khối chóp S.ABCD.
Cho hình chóp A.ABC có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Cho hàm số f(x) có đạo hàm f'(x)=(x2-1)(x-3)2019(x+2)2020, . Số điểm cực tiểu của hàm số đã cho là
Gọi I là giao điểm hai tiệm cận của đồ thị hàm số . Khi đó, điểm I nằm trên đường thẳng có phương trình:
Xét hàm số y=f(x) với x[-1;5] có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng
Cho hàm số y=x3-3x+m. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho |y|=6. Số phần tử của S là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông,AB=1 , cạnh bên SA=1 và vuông góc với mặt phẳng đáy (ABCD). Kí hiệu M là điểm di động trên đoạn CD và N là điểm di động trên đoạn CB sao cho =45o. Thể tích nhỏ nhất của khối chóp S.AMN là?
Trong không gian với hệ trục tọa độ Oxyz, gọi () là mặt phẳng đi qua điểm A(2;-1;1) và song song với mặt phẳng (Q) 2x-y+3z+2=0. Phương trình mặt phẳng () là.
Cho hàm số y=f'(x-1) có đồ thị như hình vẽ dưới đây:
Điểm cực tiểu của hàm số là
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a,b,c là các số thực dương thay đổi tùy ý sao cho a2+b2+c2=3. Khoảng cách từ O đến mặt phẳng (ABC) lớn nhất bằng
Cho hàm số y=f(x) có đồ thị được cho như hình vẽ bên dưới. Hỏi phương trình |f(x3-3x+1)-2|=1 có tất cả bao nhiêu nghiệm thực phân biệt?
Trong không gian với hệ trục tọa độ Oxyz, cho A(0;-1;1), B(-2;1;-1), C(-1;3;2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D là
Cho hai hàm số f(x)=ax4+bx3+cx2+dx+e và g(x)=mx3+nx2+px=1 với a, b, c, d, e, m, n, p, q là các số thực. Đồ thị của hai hàm số y=f'(x); y=g'(x) như hình vẽ dưới. Tổng các nghiệm của phương trình f(x)+q=g(x)+e bằng