Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y = \frac{\pi }{3}}\\{{\rm{cosx - }}\cos y = - 1}\end{array}} \right.\).
A.\(\left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{y = - \frac{\pi }{6} + k2\pi }\end{array}} \right.(k \in Z)\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{2\pi }}{3} + k2\pi }\\{y = \frac{\pi }{3} - k2\pi }\end{array}} \right.(k \in Z)\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{2\pi }}{3} + k2\pi }\\{y = \frac{\pi }{3} + k2\pi }\end{array}} \right.(k \in Z)\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{y = \frac{\pi }{6} + k2\pi }\end{array}} \right.(k \in Z)\)
Bước 1:
Bước 2:
Bước 3:
\[ \Rightarrow x = y + \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)\]
Vậy nghiệm của hệ phương trình là:\[\left( {x;y} \right) = \left( {\frac{{2\pi }}{3} + k2\pi ;\frac{\pi }{3} + k2\pi } \right)\,\,\,\left( {k \in Z} \right)\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:
Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
Khẳng định nào đúng về phương trình \[2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\]
Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?