IMG-LOGO

Câu hỏi:

22/07/2024 184

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

A.0

B.1     

C.2

Đáp án chính xác

D.3

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1: \[\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\] Khi đó \[{\sin ^2}x = 1\]Thay vào phương trình ta có:\[1 - m.0 - 3.0 = 2m\, \Leftrightarrow 2m = 1 \Leftrightarrow m = \frac{1}{2} \notin Z \Rightarrow \] loại

Trường hợp 2:\[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\]

Chia cả 2 vế của phương trình cho\[{\cos ^2}x\] ta được:

\[\begin{array}{*{20}{l}}{\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - m\frac{{\sin x}}{{\cos x}} - 3 = \frac{{2m}}{{{{\cos }^2}x}}}\\{ \Leftrightarrow {{\tan }^2}x - m\tan x - 3 = 2m\left( {1 + {{\tan }^2}x} \right)}\\{ \Leftrightarrow \left( {2m - 1} \right){{\tan }^2}x + m\tan x + 2m + 3 = 0}\end{array}\]Đặt tanx = t khi đó phương trình có dạng\[\left( {2m - 1} \right){t^2} + mt + 2m + 3 = 0\]

\[m = \frac{1}{2} \notin Z \Rightarrow \] loại

\[m \ne \frac{1}{2}\] ta có:\[{\rm{\Delta }} = {m^2} - 4\left( {2m - 1} \right)\left( {2m + 3} \right) = {m^2} - 16{m^2} - 16m + 12 = - 15{m^2} - 16m + 12\]

Để phương trình có nghiệm thì\[{\rm{\Delta }} \ge 0 \Leftrightarrow \frac{{ - 8 - 2\sqrt {61} }}{{15}} \le m \le \frac{{ - 8 + 2\sqrt {61} }}{{15}}\]

Mà\[m \in Z \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = - 1}\\{m = 0}\end{array}} \right.\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 06/09/2022 290

Câu 2:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 06/09/2022 286

Câu 3:

Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]

Xem đáp án » 06/09/2022 256

Câu 4:

Giải phương trình \[4\sin x\sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x + \frac{{2\pi }}{3}} \right) + \cos 3x = 1\]

Xem đáp án » 06/09/2022 238

Câu 5:

Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:

Xem đáp án » 06/09/2022 223

Câu 6:

Giải phương trình \[\cos 3x\tan 5x = \sin 7x\]

Xem đáp án » 06/09/2022 218

Câu 7:

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:

Xem đáp án » 06/09/2022 217

Câu 8:

Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:

Xem đáp án » 06/09/2022 216

Câu 9:

Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

Xem đáp án » 06/09/2022 214

Câu 10:

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

Xem đáp án » 06/09/2022 213

Câu 11:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 06/09/2022 205

Câu 12:

Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].

Xem đáp án » 06/09/2022 201

Câu 13:

Khẳng định nào đúng về phương trình \[2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\] 

Xem đáp án » 06/09/2022 188

Câu 14:

Giải phương trình \[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

Xem đáp án » 06/09/2022 187

Câu 15:

Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?

Xem đáp án » 06/09/2022 180

Câu hỏi mới nhất

Xem thêm »
Xem thêm »