Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]
A.\[x = - \frac{\pi }{4} + k\pi ;\,\,x = \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k2\pi ;\,\,x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\]
B. \[x = \frac{\pi }{4} + k2\pi ;\,\,x = - \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k\pi ;\,\,x = - \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\]
C. \[x = \pm \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k2\pi ;\,\,x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\]
D. \[x = - \frac{\pi }{8} + k\pi ;\,\,x = \frac{\pi }{6} + k\pi ;x = - \frac{{5\pi }}{6} + \frac{{k\pi }}{6};\,\,x = - \frac{\pi }{2} + \frac{{k\pi }}{6}\left( {k \in \mathbb{Z}} \right)\]
\[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]
\[ \Leftrightarrow \frac{1}{2}cosx(cos2x + cosx) + \frac{1}{2}sinx(cos2x - cosx) = \frac{1}{2}\]
\[ \Leftrightarrow cosxcos2x + co{s^2}x + sinxcos2x - sinxcosx = 1\]
\[ \Leftrightarrow cos2x(sinx + cosx) - sinxcosx + co{s^2}x - 1 = 0\]
\[ \Leftrightarrow cos2x(sinx + cosx) - sinxcosx - si{n^2}x = 0\]
\[ \Leftrightarrow cos2x(sinx + cosx) - sinx(sinx + cosx) = 0\]
\[ \Leftrightarrow (sinx + cosx)(cos2x - sinx) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx + cosx = 0}\\{cos2x - sinx = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = - cosx}\\{1 - 2si{n^2}x - sinx = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{tanx = - 1}\\{sinx = \frac{1}{2}}\\{sinx = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k\pi }\\{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = - \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
Vậy nghiệm của phương trình đã cho là: \[x = - \frac{\pi }{4} + k\pi ;\,\,x = \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k2\pi ;\,\,x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
Khẳng định nào đúng về phương trình \[2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\]
Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?