IMG-LOGO

Câu hỏi:

22/07/2024 147

Trong khoảng \[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]phương trình \[si{n^2}4x + 3sin4xcos4x - 4co{s^2}4x = 0\;\] có:

A.Ba nghiệm      

B.Một nghiệm     

C.Hai nghiệm

D.Bốn nghiệm

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1:\[\cos 4x = 0 \Leftrightarrow 4x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\]

Khi đó\[{\sin ^2}4x = 1\]

Thay vào phương trình ta có:\[1 + 3.0 - 4.0 = 0 \Leftrightarrow 1 = 0\,\,\left( {V\^o \,\,l\'y } \right)\]

\[ \Rightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\] không là nghiệm của phương trình.

Trường hợp 2:\[\cos 4x \ne 0 \Leftrightarrow x \ne \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\]

Chia cả 2 vế của phương trình cho \[{\cos ^2}4x\]  ta được:

\[\frac{{{{\sin }^2}4x}}{{{{\cos }^2}4x}} + 3\frac{{\sin 4x}}{{\cos 4x}} - 4 = 0 \Leftrightarrow {\tan ^2}4x + 3\tan 4x - 4 = 0\]

Đặt tan4x=t. Khi đó phương trình trở thành

\[{t^2} + 3t - 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = - 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{tan4x = 1}\\{tan4x = - 4}\end{array}} \right.\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = \frac{\pi }{4} + k\pi }\\{4x = arctan( - 4) + k\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}}\\{x = \frac{1}{4}arctan( - 4) + \frac{{k\pi }}{4}}\end{array}} \right.(k \in Z)\)

Xét nghiệm\[x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right),\,x \in \left( {0;\frac{\pi }{2}} \right)\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < \frac{\pi }{{16}} + \frac{{k\pi }}{4} < \frac{\pi }{2}}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < \frac{1}{{16}} + \frac{k}{4} < \frac{1}{2}}\\{k \in Z}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - \frac{1}{4} < k < \frac{7}{4}}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = 0}\\{k = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{16}}}\\{x = \frac{{5\pi }}{{16}}}\end{array}} \right.\)

Xét nghiệm\[x = \frac{1}{4}\arctan \left( { - 4} \right) + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right);\,\,x \in \left( {0;\frac{\pi }{2}} \right)\]

\(\left\{ {\begin{array}{*{20}{c}}{0 < \frac{1}{4}arctan( - 4) + \frac{{k\pi }}{4} < \frac{\pi }{2}}\\{k \in Z}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - \frac{1}{4}arctan( - 4) < \frac{{k\pi }}{4} < \frac{\pi }{2} - \frac{1}{4}arctan( - 4)}\\{k \in Z}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0,42 < k < 2,42}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = 1}\\{k = 2}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{4}arctan( - 4) + \frac{\pi }{4}}\\{x = \frac{1}{4}arctan( - 4) + \frac{\pi }{2}}\end{array}} \right.\)

Vậy phương trình có 4 nghiệm thuộc khoảng\[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 06/09/2022 290

Câu 2:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 06/09/2022 286

Câu 3:

Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]

Xem đáp án » 06/09/2022 256

Câu 4:

Giải phương trình \[4\sin x\sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x + \frac{{2\pi }}{3}} \right) + \cos 3x = 1\]

Xem đáp án » 06/09/2022 238

Câu 5:

Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:

Xem đáp án » 06/09/2022 223

Câu 6:

Giải phương trình \[\cos 3x\tan 5x = \sin 7x\]

Xem đáp án » 06/09/2022 218

Câu 7:

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:

Xem đáp án » 06/09/2022 217

Câu 8:

Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:

Xem đáp án » 06/09/2022 216

Câu 9:

Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

Xem đáp án » 06/09/2022 214

Câu 10:

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

Xem đáp án » 06/09/2022 213

Câu 11:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 06/09/2022 205

Câu 12:

Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].

Xem đáp án » 06/09/2022 201

Câu 13:

Khẳng định nào đúng về phương trình \[2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\] 

Xem đáp án » 06/09/2022 188

Câu 14:

Giải phương trình \[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

Xem đáp án » 06/09/2022 187

Câu 15:

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

Xem đáp án » 06/09/2022 183

Câu hỏi mới nhất

Xem thêm »
Xem thêm »