Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 135

Giải phương trình \[\cos x + \cos 3x + 2\cos 5x = 0\]

A.\[x = \frac{\pi }{2} + k\pi ,x = \pm \frac{1}{5}\arccos \frac{{1 + \sqrt {17} }}{8} + k\pi ,x = \pm \frac{1}{5}\arccos \frac{{1 - \sqrt {17} }}{8} + k\pi \]

B. \[x = \pm \frac{\pi }{6} + k\pi \]

C. \[x = \pm \frac{1}{2}\arccos \frac{{1 + \sqrt {15} }}{7} + k\pi ,x = \pm \frac{1}{2}\arccos \frac{{1 - \sqrt {15} }}{7} + k\pi \]

Đáp án chính xác

D. \[x = \frac{\pi }{2} + k\pi ,x = \pm \frac{1}{2}\arccos \frac{{1 + \sqrt {17} }}{8} + k\pi ,x = \pm \frac{1}{2}\arccos \frac{{1 - \sqrt {17} }}{8} + k\pi \]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[\cos x + \cos 3x + 2\cos 5x = 0\]

\[ \Leftrightarrow cosx + cos3x + cos5x + cos5x = 0\]

\[ \Leftrightarrow (cosx + cos5x) + (cos3x + cos5x) = 0\]

\[ \Leftrightarrow 2cos3xcos2x + 2cos4xcosx = 0\]

\[ \Leftrightarrow 2(4co{s^3}x - 3cosx)cos2x + 2cos4xcosx = 0\]

\[ \Leftrightarrow 2cosx(4co{s^2}x - 3)cos2x + 2cos4xcosx = 0\]

\[ \Leftrightarrow 2cosx[(4co{s^2}x - 3)cos2x + cos4x] = 0\]

\[ \Leftrightarrow 2cosx[[2(1 + cos2x) - 3]cos2x + 2co{s^2}2x - 1] = 0\]

\[ \Leftrightarrow 2cosx[(2cos2x - 1)cos2x + 2co{s^2}2x - 1] = 0\]

\[ \Leftrightarrow 2cosx[4co{s^2}2x - cos2x - 1] = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{cosx = 0}\\{cos2x = \frac{{1 + \sqrt {17} }}{8}}\\{cos2x = \frac{{1 - \sqrt {17} }}{8}}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{2x = \pm arccos\frac{{1 + \sqrt {17} }}{8} + k2\pi }\\{2x = \pm arccos\frac{{1 - \sqrt {17} }}{8} + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \pm \frac{1}{2}arccos\frac{{1 + \sqrt {17} }}{8} + k\pi }\\{x = \pm \frac{1}{2}arccos\frac{{1 - \sqrt {17} }}{8} + k\pi }\end{array}} \right.\)

Vậy nghiệm của phương trình là: \[x = \frac{\pi }{2} + k\pi ,x = \pm \frac{1}{2}\arccos \frac{{1 + \sqrt {17} }}{8} + k\pi ,x = \pm \frac{1}{2}\arccos \frac{{1 - \sqrt {17} }}{8} + k\pi \]

Đáp án cần chọn là: DCâu 32. Giải phương trình \[\sin 3x - \sin x + \sin 2x = 0\]

A.\[x = k\pi ,x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\]

B. \[x = \pm \frac{\pi }{3} + \frac{{k2\pi }}{3}\]

C. \[x = \frac{\pi }{2} + k\pi ,x = - \frac{\pi }{3} + \frac{{k2\pi }}{3}\]

D. \[x = 2k\pi ,x = \frac{\pi }{2} + \frac{{k\pi }}{3}\]Trả lời:

\[\sin 3x - \sin x + \sin 2x = 0\]

\[ \Leftrightarrow 2cos2xsinx + 2sinxcosx = 0\]

\[ \Leftrightarrow 2sinx(cos2x + cosx) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{cos2x = - cosx = cos(\pi - x)}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{\begin{array}{*{20}{c}}{2x = \pi - x + k2\pi }\\{2x = x - \pi + k2\pi }\end{array}}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\\{x = - \pi + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\end{array}} \right.(k \in \mathbb{Z})\)

Vậy nghiệm của phương trình là:\[x = k\pi ,x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 06/09/2022 270

Câu 2:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 06/09/2022 265

Câu 3:

Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]

Xem đáp án » 06/09/2022 239

Câu 4:

Giải phương trình \[4\sin x\sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x + \frac{{2\pi }}{3}} \right) + \cos 3x = 1\]

Xem đáp án » 06/09/2022 221

Câu 5:

Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:

Xem đáp án » 06/09/2022 204

Câu 6:

Giải phương trình \[\cos 3x\tan 5x = \sin 7x\]

Xem đáp án » 06/09/2022 198

Câu 7:

Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

Xem đáp án » 06/09/2022 196

Câu 8:

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:

Xem đáp án » 06/09/2022 195

Câu 9:

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

Xem đáp án » 06/09/2022 194

Câu 10:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 06/09/2022 192

Câu 11:

Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:

Xem đáp án » 06/09/2022 190

Câu 12:

Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].

Xem đáp án » 06/09/2022 184

Câu 13:

Khẳng định nào đúng về phương trình \[2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\] 

Xem đáp án » 06/09/2022 175

Câu 14:

Giải phương trình \[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

Xem đáp án » 06/09/2022 175

Câu 15:

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

Xem đáp án » 06/09/2022 169

Câu hỏi mới nhất

Xem thêm »
Xem thêm »