Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:
A.\[y' = \frac{{ - 13{x^2} - 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
B. \[y' = \frac{{ - 13{x^2} + 5x + 11}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
C. \[y' = \frac{{ - 13{x^2} + 5x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
D. \[y' = \frac{{ - 13{x^2} + 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
\[y\prime = \frac{{(2{x^2} + 3x - 1)\prime ({x^2} - 5x + 2) - (2{x^2} + 3x - 1)({x^2} - 5x + 2)\prime }}{{{{({x^2} - 5x + 2)}^2}}}\]
\[y\prime = \frac{{(4x + 3)({x^2} - 5x + 2) - (2{x^2} + 3x - 1)(2x - 5)}}{{{{({x^2} - 5x + 2)}^2}}}\]
\( = \frac{{4{x^3} - 20{x^2} + 8x + 3{x^2} - 15x + 6 - 4{x^3} - 6{x^2} + 2x + 10{x^2} + 15x - 5}}{{{{({x^2} - 5x + 2)}^2}}}\)
\[y\prime = \frac{{ - 13{x^2} + 10x + 1}}{{{{({x^2} - 5x + 2)}^2}}}\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Đạo hàm của hàm số \[y = \frac{1}{{{x^3}}} - \frac{1}{{{x^2}}}\] là
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Đạo hàm của hàm số \[y = \frac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\] là: