Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
A.\[m \le \sqrt 2 \]
B. \[m \le 2\]
C. \[m \le 0\]
D. \(m < 0\)
\[\begin{array}{*{20}{l}}{y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1}\\{ \Rightarrow y' = m{x^2} - 2mx + 3m - 1}\\{y' \le 0,\forall x \in R \Rightarrow m{x^2} - 2mx + 3m - 1 \le 0,\forall x \in R}\end{array}\]
TH1: \[m = 0,\] khi đó \[BPT \Leftrightarrow - 1 \le 0\] đúng\[\forall x \in R\]
TH2:
\[m \ne 0 \Leftrightarrow y\prime \le 0\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = m < 0}\\{\Delta \prime = {m^2} - m(3m - 1) \le 0}\end{array}} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < 0}\\{ - 2{m^2} + m \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < 0}\\{\left[ {\begin{array}{*{20}{c}}{m \le 0}\\{m \ge \frac{1}{2}}\end{array}} \right.}\end{array}} \right.\)
\[ \Leftrightarrow m < 0\]
Kết hợp cả 2 trường hợp ta có\[m \le 0\] là những giá trị cần tìm.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Đạo hàm của hàm số \[y = \frac{1}{{{x^3}}} - \frac{1}{{{x^2}}}\] là
Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Đạo hàm của hàm số \[y = \frac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\] là:
Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị f′(0) bằng: