Cho hàm số \[f\left( x \right) = {\left( {\sqrt x - \frac{1}{{\sqrt x }}} \right)^3}\]. Hàm số có đạo hàm f′(x) bằng:
A.\[\frac{3}{2}\left( {\sqrt x + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\]
B. \[x\sqrt x - 3\sqrt x + \frac{3}{{\sqrt x }} - \frac{1}{{x\sqrt x }}\]
C. \[\frac{3}{2}\left( { - \sqrt x + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} - \frac{1}{{{x^2}\sqrt x }}} \right)\]
D. \[\frac{3}{2}\left( {\sqrt x - \frac{1}{{\sqrt x }} - \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\]
\[f(x) = {(\sqrt x - \frac{1}{{\sqrt x }})^3} = {(\sqrt x )^3} - 3{(\sqrt x )^2}.\frac{1}{{\sqrt x }} + 3\sqrt x {(\frac{1}{{\sqrt x }})^2} - {(\frac{1}{{\sqrt x }})^3}\]
\[f(x) = {x^{\frac{3}{2}}} - 3\sqrt x + \frac{3}{{\sqrt x }} - \frac{1}{{{x^{\frac{3}{2}}}}}\]
\[f(x) = {x^{\frac{3}{2}}} - 3\sqrt x + 3{x^{ - \frac{1}{2}}} - {x^{ - \frac{3}{2}}}\]
\[f\prime (x) = \frac{3}{2}{x^{\frac{3}{2} - 1}} - \frac{3}{{2\sqrt x }} + 3.( - \frac{1}{2}){x^{ - \frac{1}{2} - 1}} + \frac{3}{2}{x^{ - \frac{3}{2} - 1}}\]
\[f\prime (x) = \frac{3}{2}\sqrt x - \frac{3}{{2\sqrt x }} - \frac{3}{2}{x^{ - \frac{3}{2}}} + \frac{3}{2}{x^{ - \frac{5}{3}}}\]
\[f\prime (x) = \frac{3}{2}(\sqrt x - \frac{1}{{\sqrt x }} - \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }})\]
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Đạo hàm của hàm số \[y = \frac{1}{{{x^3}}} - \frac{1}{{{x^2}}}\] là
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Đạo hàm của hàm số \[y = \frac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\] là: