Cho hàm số y=f(x) có đạo hàm trên \(\mathbb{R}\) Xét các hàm số \[g(x) = f(x) - f(2x)\] và \[h(x) = f(x) - f(4x)\] Biết rằng \[g\prime \left( 1 \right) = 21\;\] và \[g\prime \left( 2 \right) = 1000\]. Tính h′(1)
A.−2018.
B.2021.
C.2021.
D.2019
Bước 1:
\[\begin{array}{*{20}{l}}{g'\left( x \right) = f'\left( x \right) - 2f'\left( {2x} \right)}\\{h'\left( x \right) = f'\left( x \right) - 4f'\left( {4x} \right)}\end{array}\]
Bước 2:
\[\begin{array}{*{20}{l}}{g'\left( 1 \right) = f'\left( 1 \right) - 2f'\left( 2 \right) = 21}\\{g'\left( 2 \right) = f'\left( 2 \right) - 2f'\left( 4 \right) = 1000}\\{ \Rightarrow 2f'\left( 2 \right) - 4f'\left( 4 \right) = 2000}\\{h'\left( 1 \right) = f'\left( 1 \right) - 4f'\left( 4 \right)}\\{ = g'\left( 1 \right) + 2g'\left( 2 \right) = 2021}\end{array}\]
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Đạo hàm của hàm số \[y = \frac{1}{{{x^3}}} - \frac{1}{{{x^2}}}\] là
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Đạo hàm của hàm số \[y = \frac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\] là: