Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-20;20] để đồ thị hàm số có 5 đường tiệm cận?
A. 40
B. 20
C. 21
D. 41
Đáp án B
Từ đồ thị hàm số y=f(x) ta suy ra f(x) có tập xác định và các giới hạn , , , , .
Vì hàm số xác định trên R nên hàm số xác định
Vì nên .
Do đó đồ thị hàm số có đúng một đường tiệm cận ngang là đường thẳng y=-m(về cả 2 phía và )
Để đồ thị hàm số có 5 đường tiệm cận thì nó phải có 4 đường tiệm cận đứng.
Điều kiện cần phải có 4 nghiệm phân biệt.
có 4 nghiệm phân biệt .
Điều kiện đủ: Giả sử là hai nghiệm phân biệt của phương trình ; là hai nghiệm phân biệt của phương trình .
Xét đường thẳng , ta có .
Suy ta đường thẳng là tiệm cận đứng của đồ thị hàm số .
Tương tự các đường thẳng , cũng là các đường tiệm cận đứng của đồ thị hàm số .
Vậy để đồ thị hàm số có 5 đường tiệm cận thì m<0.
Do và nên có tất cả 20 giá trị của m.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Đường thẳng y=x+1 cắt đồ thị hàm số tại hai điểm M, N. Độ dài đoạn thẳng MN bằng
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ và vectơ . Tìm tọa độ vectơ là tích có hướng của và
Có bao nhiêu giá trị nguyên của tham số thực m thuộc đoạn [-20;10] để đồ thị hàm số có hai đường tiệm cận đứng?
Cho hàm số y=f(x) có đồ thị như hình vẽ bên dưới.
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-2020;2020) để hàm số đồng biến trên nửa khoảng .
Khối chóp S.ABC có SA vuông góc với đáy, SBC là tam giác đều cạnh a, tam giác ABC vuông tại A. Thể tích của khối chóp S.ABC bằng
Cho hàm số y=f(x). Đồ thị y=f'(x) như hình bên.
Biết . Giá trị nhỏ nhất của hàm số trên đoạn [-1;3] là
Cho hàm số có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi M là trung điểm của AA'. Gọi góc giữa đường thẳng MB' và mặt phẳng là , góc thỏa mãn đẳng thức nào dưới đây?
Cho tam giác ABC đều cạnh a. Quay tam giác ABC quanh đường cao AH ta được hình nón tròn xoay. Diện tích mặt cầu nội tiếp hình nón bằng
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn để phương trình có nghiệm thực?
Với a là số thực dương tùy ý khác 1 và b là số thực tùy ý, mệnh đề nào dưới đây đúng?
Cho a, b, c là các số thực thuộc khoảng (0;1), với . Tìm giá trị nhỏ nhất của biểu thức P=x+y+9z