Cho phương trình \[{\log _3}x.{\log _5}x = {\log _3}x + {\log _5}x\]. Khẳng định nào sau đây là đúng?
A.Phương trình có một nghiệm hữu tỉ và một nghiệm vô tỉ
B.Phương trình có một nghiệm duy nhất
C.Phương trình vô nghiệm
D.Tổng các nghiệm của phương trình là một số chính phương
Điều kiện x>0
Ta đặt\[{\log _3}x = u;{\log _5}x = v \Rightarrow u.v = u + v\]
Khi đó\[x = {3^u} = {5^v}\] suy ra\[{\log _3}{3^u} = {\log _3}{5^v} \Leftrightarrow u = v{\log _3}5\]
\[ \Rightarrow uv = u + v \Leftrightarrow {v^2}{\log _3}5 = v{\log _3}5 + v \Leftrightarrow {v^2}{\log _3}5 - v\left( {{{\log }_3}5 + 1} \right) = 0\]
\[ \Leftrightarrow v\left( {v{{\log }_3}5 - {{\log }_3}5 - 1} \right) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{v = 0}\\{vlo{g_3}5 - lo{g_3}5 - 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{v = 0}\\{v = \frac{{lo{g_3}5 + 1}}{{lo{g_3}5}}}\end{array}} \right. = 1 + \frac{1}{{lo{g_3}5}}\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{u = 0}\\{u = 1 + lo{g_3}5}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1(TM)}\\{x = {3^{1 + lo{g_3}5}} = 15(TM)}\end{array}} \right.\)
Do đó phương trình có hai nghiệm \[{x_1} = 1,{x_2} = 15\] và tổng hai nghiệm bằng 16 là một số chính phương.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Cho các số thực dương a,b,c khác 1 thỏa mãn
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)
Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:
Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]
Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].
Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn \[\left[ { - 2017;2017} \right]\;\]để phương trình \[logmx = 2log(x + 1)\;\;\] có nghiệm duy nhất?
Cho x,y là các số thực dương thỏa mãn \[lo{g_2}\frac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = (x + y - 1)(2x + 2y - 1) - 4\left( {xy + 1} \right)\] Giá trị lớn nhất của biểu thức \[P = \frac{{5x + 3y - 2}}{{2x + y + 1}}\;\] bằng:
Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]