IMG-LOGO

Câu hỏi:

14/07/2024 118

Cho các số thực a,b,c thuộc khoảng \[\left( {1; + \infty } \right)\;\]và thỏa mãn \[\,\,\,\,\,\,\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\frac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\]. Giá trị của biểu thức \[lo{g_a}b + lo{g_b}{c^2}\;\] bằng:

A.1

Đáp án chính xác

B.\(\frac{1}{2}\)

C.2

D.3

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\log _{\sqrt a }^2b + {{\log }_b}c.{{\log }_b}\left( {\frac{{{c^2}}}{b}} \right) + 9{{\log }_a}c = 4{{\log }_a}b}\\{ \Leftrightarrow 4\log _a^2b + {{\log }_b}c.\left( {2{{\log }_b}c - 1} \right) + 9{{\log }_a}c = 4{{\log }_a}b}\\{ \Leftrightarrow 4\log _a^2b + 2\log _b^2c - {{\log }_b}c + 9{{\log }_a}b.{{\log }_b}c = 4{{\log }_a}b\,\,\left( * \right)}\end{array}\]

Đặt \[x = {\log _a}b,\,\,y = {\log _b}c\] ta có:\(\left\{ {\begin{array}{*{20}{c}}{x = lo{g_a}b > lo{g_a}1 = 0}\\{y = lo{g_b}c > lo{g_b}1 = 0}\end{array}} \right.(do\,\,\,a,b,c > 1)\)

Khi đó phương trình (*) trở thành:

\[4{x^2} + 2{y^2} - y + 9xy = 4x\]

\[ \Leftrightarrow 4{x^2} + xy + 8xy + 2{y^2} - y - 4x = 0\]

\[ \Leftrightarrow x(4x + y) + 2y(4x + y) - (4x + y) = 0\]

\[ \Leftrightarrow (4x + y)(x + 2y - 1) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x + y = 0}\\{x + 2y - 1 = 0}\end{array}} \right.\)

TH1:\[y = - 4x\] loại do x,y>0.

TH2: \[x + 2y - 1 = 0 \Leftrightarrow x + 2y = 1\] khi đó ta có:\[{\log _a}b + {\log _b}{c^2} = x + 2y = 1\]Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]

Xem đáp án » 07/09/2022 257

Câu 2:

Cho các số thực dương a,b,c  khác 1 thỏa mãn 

Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].

Xem đáp án » 07/09/2022 231

Câu 3:

Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?

Xem đáp án » 07/09/2022 204

Câu 4:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án » 07/09/2022 185

Câu 5:

Giải phương trình: \[\mathop \smallint \limits_0^2 \left( {t - {{\log }_2}x} \right)dt = 2{\log _2}\frac{2}{x}\] (ẩn x)

Xem đáp án » 07/09/2022 176

Câu 6:

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:

Xem đáp án » 07/09/2022 172

Câu 7:

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:

Xem đáp án » 07/09/2022 170

Câu 8:

Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

Xem đáp án » 07/09/2022 164

Câu 9:

Giải phương trình \[{\log _4}(x + 1) + {\log _4}(x - 3) = 3\]

Xem đáp án » 07/09/2022 163

Câu 10:

Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].

Xem đáp án » 07/09/2022 159

Câu 11:

Hỏi có bao nhiêu giá trị m  nguyên trong đoạn \[\left[ { - 2017;2017} \right]\;\]để phương trình \[logmx = 2log(x + 1)\;\;\] có nghiệm duy nhất?

Xem đáp án » 07/09/2022 159

Câu 12:

Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:

Xem đáp án » 07/09/2022 155

Câu 13:

Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:

Xem đáp án » 07/09/2022 154

Câu 14:

Cho x,y là các số thực dương thỏa mãn \[lo{g_2}\frac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = (x + y - 1)(2x + 2y - 1) - 4\left( {xy + 1} \right)\] Giá trị lớn nhất của biểu thức \[P = \frac{{5x + 3y - 2}}{{2x + y + 1}}\;\] bằng:

Xem đáp án » 07/09/2022 148

Câu 15:

Phương trình sau đây có bao nhiêu nghiệm\[\left( {{x^2} - 4} \right)\left( {{{\log }_2}x + {{\log }_3}x + {{\log }_4}x + ... + {{\log }_{19}}x - \log _{20}^2x} \right) = 0\]

Xem đáp án » 07/09/2022 147

Câu hỏi mới nhất

Xem thêm »
Xem thêm »