Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?
A.36
B.35
C.34
D.Vô số
ĐK:\[{x^2} + 6x + 5 + m > 0.\]
\[\begin{array}{*{20}{l}}{{{\log }_7}\left( {{x^2} + 2x + 2} \right) + 1 > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow {{\log }_7}7\left( {{x^2} + 2x + 2} \right) > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m}\\{ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0}\\{ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0}\end{array}\]
Bất phương trình đã cho có tập nghiệm chứa (1;3)
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} + 6x + 5 + m > 0,\forall x \in (1;3)}\\{6{x^2} + 8x + 9 - m > 0,\forall x \in (1;3)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - {x^2} - 6x - 5,\forall x \in (1;3)}\\{m < 6{x^2} + 8x + 9,\forall x \in (1;3)}\end{array}} \right.\left( * \right)\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge \mathop {max}\limits_{[1;3]} f(x)}\\{m \le \mathop {min}\limits_{[1;3]} g(x)}\end{array}} \right.\end{array}\)
với\[f\left( x \right) = - {x^2} - 6x - 5\] và\[g\left( x \right) = 6{x^2} + 8x + 9\]
Ta có:\[f'\left( x \right) = - 2x - 6 = 0 \Leftrightarrow x = - 3 \notin \left( {1;3} \right)\] và\[f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = f\left( x \right)\] nghịch biến trên \[\left( {1;3} \right)\]
\[ \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = - 12 \Rightarrow m \ge - 12\]
\[g'\left( x \right) = 12x + 8 = 0 \Leftrightarrow x = - \frac{2}{3} \notin \left( {1;3} \right)\] và \[g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = g\left( x \right)\] đồng biến trên (1;3)
\[ \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23 \Rightarrow m \le 23\]
Vậy\[ - 12 \le m \le 23\]
Mà\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\] hay có\[23 - \left( { - 12} \right) + 1 = 36\] giá trị.
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\] bằng:
Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]
Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]
Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:
Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]
Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:
Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:
Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:
Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]
Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]
Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:
Bất phương trình \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?
Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng
Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là