IMG-LOGO

Câu hỏi:

21/07/2024 157

Tập nghiệm của bất phương trình \[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x}\] là:

A.\[\left( { - \infty ; - 1} \right] \cup \left[ {0;1} \right]\]

B. \[\left[ { - 1;0} \right]\]

C. \[\left( { - \infty ; - 1} \right) \cup \left[ {0; + \infty } \right)\]

D. \[\left[ { - 1;0} \right] \cup \left( {1; + \infty } \right)\]

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x} \Leftrightarrow {\left( {\sqrt 5 + 2} \right)^{\frac{{ - 2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x} \Leftrightarrow - \frac{{2x}}{{x - 1}} \le x\]

\[ \Leftrightarrow \frac{{2x}}{{x - 1}} + x \ge 0 \Leftrightarrow \frac{{{x^2} + x}}{{x - 1}} \ge 0 \Leftrightarrow - 1 \le x \le 0 \vee x > 1\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\] bằng:

Xem đáp án » 07/09/2022 251

Câu 2:

Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]

Xem đáp án » 07/09/2022 241

Câu 3:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án » 07/09/2022 238

Câu 4:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

Xem đáp án » 07/09/2022 218

Câu 5:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án » 07/09/2022 218

Câu 6:

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

Xem đáp án » 07/09/2022 218

Câu 7:

Giải bất phương trình \[{\log _2}\left( {3x - 1} \right) \ge 3\]

Xem đáp án » 07/09/2022 217

Câu 8:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Xem đáp án » 07/09/2022 214

Câu 9:

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

Xem đáp án » 07/09/2022 201

Câu 10:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 1)

Xem đáp án » 07/09/2022 198

Câu 11:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

Xem đáp án » 07/09/2022 194

Câu 12:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án » 07/09/2022 189

Câu 13:

Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng

Xem đáp án » 07/09/2022 188

Câu 14:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án » 07/09/2022 186

Câu 15:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án » 07/09/2022 184

Câu hỏi mới nhất

Xem thêm »
Xem thêm »