Cho đường thẳng d có phương trình \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P) có phương trình \[(P):x + y + z - 10 = 0\]. Trong các khẳng định sau, khẳng định nào đúng?
A.d nằm trong (P)
B.d song song với (P)
C.d vuông góc với (P)
D.d tạo với (P) một góc nhỏ hơn 450
Giả sử M là giao điểm của (d) và (P).
Lấy \[M \in (d) \Rightarrow M\left( {2t;1 - t;3 + t} \right)\]
Vì\[M \in (P) \Rightarrow 2t + 1 - t + 3 + t - 10 = 0 \Leftrightarrow 2t - 6 = 0 \Leftrightarrow t = 3\]
Suy ra ta có M(6;−2;6), suy ra d cắt (P) tại 1 điểm duy nhất. Do đó, loại đáp án A và B.
Mặt khác giả sử\[d \bot (P) \Rightarrow \frac{2}{1} = \frac{1}{1} = \frac{{ - 1}}{1}\](vô lý). Do đó loại C
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:
Đề thi THPT QG - 2021 - mã 101
Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng (P):x−2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:
Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;−3;5) và B(2;−5;1).Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng \[\left( d \right):\frac{{x + 1}}{3} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 9}}{{13}}\].
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;1;2),B(0;−1;1) và song song với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\;\] là:
Cho \[d:\frac{{x + 1}}{2} = \frac{{y - 3}}{m} = \frac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0\]. Tìm m để d và (P) vuông góc với nhau.
Trong không gian Oxyz, cho hai điểm A(2;−2;4);B(−3;3;−1) và mặt phẳng (P):2x−y+2z−8=0. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\;\]bằng:
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\] và mặt phẳng \[\left( P \right):x + y - z - 3 = 0\]. Tọa độ giao điểm của d và (P) là:
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:
Trong không gian với hệ tọa độ Oxyz, cho cho mặt phẳng (P):x−2y+3z−1=0 và đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\]. Khẳng định nào sau đây đúng:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Trong không gian Oxyz cho hai mặt phẳng \[\left( P \right):2x + y - z - 3 = 0\;\] và \[\left( Q \right):x + y + z - 1 = 0\]. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là: