Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Bước 1: Gọi\[A = d \cap Oxy \Rightarrow \] Tìm tọa độ điểm AA.
Mặt phẳng Oxy có phương trình z=0.
Gọi \[A = d \cap Oxy \Rightarrow \] Tọa độ của A là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\\{z = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 0}\\{z = 0}\end{array}} \right. \Rightarrow A(2;0;0)\)
Bước 2: Lấy điểm B bất kì thuộc d. Gọi B′ là điểm đối xứng với B qua Oxy⇒ Tìm tọa độ điểm B′.
Lấy \[B\left( {0;0;1} \right) \in d\] Gọi B′ là điểm đối xứng với B qua \[Oxy \Rightarrow B'\left( {0;0; - 1} \right)\].
Bước 3: d′ là đường thẳng đối xứng với d qua mặt phẳng Oxy ⇒d′ đi qua A,B′. Viết phương trình đường thẳng d′.
d′ là đường thẳng đối xứng với d qua mặt phẳng Oxy ⇒d′ đi qua A,B′.
⇒d′ nhận\[\overrightarrow {AB'} = \left( { - 2;0; - 1} \right)//\left( {2;0;1} \right)\] là 1 VTCP ⇒\(d':\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = 0}\\{z = t}\end{array}} \right.\)
\( \Rightarrow a = 2,b = 2,c = 0\)
\( \Rightarrow a + b + c = 2 + 2 + 0 = 4\)Câu 28. Trong không gian Oxyz, gọi d′ là hình chiếu vuông góc của đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\) trên mặt phẳng (Oxy). Phương trình tham số của đường thẳng d′ là
A.\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = t}\\{z = t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{z = t}\end{array}} \right.\)
Bước 1:
Đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\) đi qua hai điểm O(0;0;0) và A(1;1;1).
Bước 2:
Hình chiếu của điểm O,A trên (Oxy) lần lượt là O(0;0;0) và A′(1;1;0).
Bước 3:
Khi đó hình chiếu của d là đường thẳng d′d′ đi qua O,A′, nhận \[\overrightarrow {OA'} = \left( {1;1;0} \right)\]là 1 VTCP nên có phương trình tham số là \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:
Đề thi THPT QG - 2021 - mã 101
Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng (P):x−2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:
Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;−3;5) và B(2;−5;1).Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng \[\left( d \right):\frac{{x + 1}}{3} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 9}}{{13}}\].
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;1;2),B(0;−1;1) và song song với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\;\] là:
Cho \[d:\frac{{x + 1}}{2} = \frac{{y - 3}}{m} = \frac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0\]. Tìm m để d và (P) vuông góc với nhau.
Trong không gian Oxyz, cho hai điểm A(2;−2;4);B(−3;3;−1) và mặt phẳng (P):2x−y+2z−8=0. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\;\]bằng:
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Cho đường thẳng d có phương trình \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P) có phương trình \[(P):x + y + z - 10 = 0\]. Trong các khẳng định sau, khẳng định nào đúng?
Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\] và mặt phẳng \[\left( P \right):x + y - z - 3 = 0\]. Tọa độ giao điểm của d và (P) là:
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:
Trong không gian với hệ tọa độ Oxyz, cho cho mặt phẳng (P):x−2y+3z−1=0 và đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\]. Khẳng định nào sau đây đúng:
Trong không gian Oxyz cho hai mặt phẳng \[\left( P \right):2x + y - z - 3 = 0\;\] và \[\left( Q \right):x + y + z - 1 = 0\]. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là: