Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 1,212

Chứng tỏ rằng mọi ước nguyên tố của 2.3.4…2 020. 2 021 – 1 đều lớn hơn 2 021.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đặt A = 2.3.4…2 020. 2 021 – 1

Gọi k là ước nguyên tố của A = 2.3.4…2 020. 2 021 – 1 (k >1).

Do đó A chia hết cho k.

Giả sử k ≤ 2021, khi đó 2.3.4…2 020. 2 021 chia hết cho k mà A cũng chia hết cho k nên 1 phải chia hết cho k hay k = 1 (vô lý).

Suy ra giả sử sai.

Vậy k > 2021.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm số tự nhiên n sao cho: 

a) 7n là số nguyên tố;

b) 3+ 18 là số nguyên tố.

Xem đáp án » 03/12/2021 2,314

Câu 2:

Chứng tỏ rằng các tổng sau đây là hợp số:

a) abcabc + 22;

b) abcabc+39 .

Xem đáp án » 03/12/2021 1,631

Câu 3:

Tìm số nguyên tố p thỏa mãn mỗi điều kiện sau:

a) p + 1 cũng là số nguyên tố;

b) p + 2 và p + 4 đều là số nguyên tố;

c) p + 2; p + 6; p + 14; p + 16 đều là số nguyên tố.

Xem đáp án » 03/12/2021 1,378

Câu 4:

Tìm chữ số x để mỗi số sau là hợp số

a) 2x;

b) 7x.

Xem đáp án » 03/12/2021 1,022

Câu 5:

Cho các số 3; 13; 17; 18; 25; 39; 41. Trong các số đó:

a) Số nào là số nguyên tố? Vì sao?

b) Số nào là hợp số? Vì sao?

Xem đáp án » 03/12/2021 967

Câu 6:

Tìm số tự nhiên a để trong 10 số tự nhiên sau: a + 1; a + 2; a + 3; …; a + 9; a + 10 có nhiều số nguyên tố nhất.

 

Xem đáp án » 03/12/2021 794

Câu 7:

a) Tìm các ước nguyên tố của các số sau: 12; 36; 43.

b) Tìm các ước không phải là số nguyên tố của các số sau: 21; 35; 47.

Xem đáp án » 03/12/2021 679

Câu 8:

Ba số nguyên tố phân biệt có tổng là 106. Số lớn nhất trong ba số nguyên tố đó có thể lớn nhất bằng bao nhiêu?

Xem đáp án » 03/12/2021 459

Câu 9:

Hai bạn Ân và Huệ tranh luận tính đúng, sai của các phát biểu sau:

a) Có ba số lẻ liên tiếp đều là số nguyên tố;

b) Có hai số nguyên tố mà tổng của chúng là một số lẻ;

c) Mọi số nguyên tố đều là số lẻ.

d) Tổng của hai số nguyên tố bất kì là một số chẵn.

Hãy giúp các bạn tìm ra phát biểu đúng và phát biểu sai. Cho ví dụ cụ thể.

Xem đáp án » 03/12/2021 309

Câu hỏi mới nhất

Xem thêm »
Xem thêm »