Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 162

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), tam giác \(SAD\) đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(I\) là điểm thỏa mãn \(\overrightarrow {BI} = \overrightarrow {AC} \). Khoảng cách giữa hai đường thẳng \(SI\) và \(AC\) là

A. \(\frac{{a\sqrt 5 }}{{10}}\).

B. \(\frac{{a\sqrt 5 }}{5}\).

Đáp án chính xác

C. \(\frac{{2a\sqrt 5 }}{5}\).

D. \(\frac{{a\sqrt 5 }}{{15}}\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy là hình vuông cạnha, tam giác SAD đều và nằm trong  (ảnh 2)

Gọi \(H\) là trung điểm của \(AD\). Vì tam giác \(SAD\) đều cạnh \(a\) nên \(SH \bot AD\)và \(SH = \frac{{a\sqrt 3 }}{2}\). Do tam giác \(SAD\) nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right)\).

Vì \(AC//BI\) nên \(AC//\left( {SBI} \right)\) suy ra \(d\left( {AC,SI} \right) = d\left( {AC,\left( {SBI} \right)} \right) = d\left( {A,\left( {SBI} \right)} \right)\).

Gọi \(E\) là giao điểm của \(AD\) và \(BI\). Dễ thấy \(AE = AD\) nên \(\frac{{AE}}{{HE}} = \frac{2}{3}\).

Lại có \(\frac{{d\left( {A,\left( {SBI} \right)} \right)}}{{d\left( {H,\left( {SBI} \right)} \right)}} = \frac{{AE}}{{HE}} = \frac{2}{3}\). Từ đó suy ra \(d\left( {AC,SI} \right) = \frac{2}{3}d\left( {H,\left( {SBI} \right)} \right)\).

Kẻ \(HP \bot BI{\rm{ }}\left( {P \in BI} \right)\), \(HQ \bot SP{\rm{ }}\left( {Q \in SP} \right)\). Khi đó \(d\left( {H,\left( {SBI} \right)} \right) = HQ\).

Ta có \(HP = \frac{3}{4}BD = \frac{{3a\sqrt 2 }}{4}\).

Từ đó ta có \(\frac{1}{{H{Q^2}}} = \frac{1}{{H{P^2}}} + \frac{1}{{S{H^2}}} = \frac{8}{{9{a^2}}} + \frac{4}{{3{a^2}}} = \frac{{20}}{{9{a^2}}} \Rightarrow HQ = \frac{{3a\sqrt 5 }}{{10}}\).

Vậy \(d\left( {AC,SI} \right) = \frac{2}{3}.\frac{{3a\sqrt 5 }}{{10}} = \frac{{a\sqrt 5 }}{5}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Diện tích toàn phần của một hình nón có độ dài đường sinh \[l\] gấp đôi bán kính đáy \[r\] là

Xem đáp án » 08/09/2022 460

Câu 2:

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \[AB = 2a,\,\,AD = a,\,\,SA = 3a\] và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\)sao cho \(SE = a\), cosin của góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng

Xem đáp án » 08/09/2022 460

Câu 3:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) thuộc \(\left[ {1;2020} \right]\) để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng \(3\) điểm cực trị. Tổng tất cả các phần tử của \(S\) là?

Cho hàm số bậc bốn y=f(x)có đồ thị hàm sốy=f'(x) như hình bên dưới. Gọi S là tập hợp (ảnh 1)

Xem đáp án » 08/09/2022 386

Câu 4:

Cho hàm số \(y = \frac{{ax - 2}}{{cx + d}}\) có đồ thị như hình vẽ bên dưới

Cho hàm số y=(ax-2)/(cx+d) có đồ thị  như hình vẽ bên dưới Mệnh đề nào sau đây đúng   (ảnh 1)

Mệnh đề nào sau đây đúng

Xem đáp án » 08/09/2022 345

Câu 5:

Có bao nhiêu cặp số nguyên dương\(\left( {x;y} \right)\)thỏa mãn:\(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)

Xem đáp án » 08/09/2022 345

Câu 6:

Trên giá sách có \[10\] quyển sách tiếng Việt khác nhau, \[8\] quyển sách Toán khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách?

Xem đáp án » 08/09/2022 329

Câu 7:

Cho hai hàm số đa thức bậc bốn \(y = f(x)\) và \(y = g(x)\)có đồ thị như hình vẽ, trong đó đường đậm hơnlà đồ thị hàm số \(y = f(x)\). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ là \( - 3\) và cắt nhau tại hai điểm nữa có hoành độ lần lượt là \( - 1\) và \(3\). Số giá trị nguyên của tham số \(m \in \left[ { - 12;12} \right]\) để bất phương trình \(f(x) \ge g(x) + m\) nghiệm đúng với mọi \(x \in {\rm{[}} - 3;3]\)?

Cho hai hàm số đa thức bậc bốn y=f(x) và y=g(x) có đồ thị như hình vẽ, trong đó đường  (ảnh 1)

Xem đáp án » 08/09/2022 319

Câu 8:

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\] thỏa mãn: \[f\left( {1 + 4\sin x} \right) - \sin x.f\left( {3 - 2\cos 2x} \right) = 6\sin x + 1\] , \[\forall x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\]. Khi đó \[I = \int\limits_{ - 3}^1 {f\left( x \right)dx} \] bằng:

Xem đáp án » 08/09/2022 313

Câu 9:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ bên dưới.

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ bên dưới.Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?LờigiảiHàm số xác định trên khoảng \(\left( {  (ảnh 1)

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 294

Câu 10:

Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và công bội \(q = 3\). Tính \({u_3}\).

Xem đáp án » 08/09/2022 292

Câu 11:

Cho hàm số \(f(x)\) có \(f\left( 3 \right) = \frac{9}{2}\) và \(f\prime (x) = \frac{{{x^3} + {x^2} - 1}}{{{x^2} + x + \sqrt {x + 1} }}{\rm{ }}\forall x >- 1\). Tính \(\int\limits_0^3 {f\left( x \right)} {\rm{d}}x\) bằng

Xem đáp án » 08/09/2022 279

Câu 12:

Cho biết sự rằng tỉ lệ tăng dân số thế giới hàng năm là \(1,32\% \), nếu tỉ lệ tăng dân số không thay đổi thì đến tăng trưởng dân số được tính theo công thức tăng trưởng liên tục \(S = A.{{\rm{e}}^{Nr}}\)trong đó \(A\) là dân số tại thời điểm mốc, \(S\) là số dân sau \(N\) năm, \(r\) là tỉ lệ tăng dân số hàng năm. Năm \(2013\) dân số thể giới vào khoảng \(7095\) triệu người. Biết năm \(2020\) dân số thế giới gần nhất với giá trị nào sau đây?

Xem đáp án » 08/09/2022 244

Câu 13:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên đoạn \(\left[ { - 2;2} \right]\) và có đồ thị là đường cong trong hình vẽ bên dưới. Hàm số \(y = f\left( x \right)\) đạt cực tiểu tại điểm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên đoạn \(\left[ { - 2;2} \right]\) và có đồ thị là đường cong trong hình vẽ bên dưới. Hàm số \(y = f\left( x \right)\) đạt cực tiểu  (ảnh 1)

Xem đáp án » 08/09/2022 242

Câu 14:

Xét các số thực dương \(a,\,b\) thỏa mãn \[{\log _9}a = \log {}_{12}b = \log {}_{15}\left( {a + b} \right)\]. Mệnh đề nào dưới đây đúng?

Xem đáp án » 08/09/2022 236

Câu 15:

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} - 2x - 2y + 6z - 11 = 0\). Tọa độ tâm mặt cầu\(\left( S \right)\,\)là \(I\left( {a\,;\,b\,;\,c} \right)\). Tính \(a + b + c\)?

Xem đáp án » 08/09/2022 231

Câu hỏi mới nhất

Xem thêm »
Xem thêm »