Tìm số tự nhiên có dạng sao cho số đó chia hết cho 6, 7, 11 và 27.
Số tự nhiên cần tìm chia hết cho 6, 7, 11 và 27 nên số đó là bội chung của 6, 7, 11 và 27.
Ta có: 6 = 2.3, 7 = 7, 11 = 11, 27 = 33.
Khi đó BCNN(6, 7, 11, 27) = 2.33.11.27 = 4 158.
Do đó là bội của 4 158 hay tồn tại số tự nhiên k để = 4 158k.
Mặt khác 95 600 ≤ ≤ 95 699 nên 95 600 4 158k 95 699 hay 22 < k < 24.
Suy ra k = 23.
Ta có 4 158.23 = 95 634.
Do đó x = 3, y = 4.
Vậy số tự nhiên cần tìm là 95 634.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Lịch cập cảng của ba tàu như sau: tàu thứ nhất cứ 5 ngày cập cảng một lần; tàu thứ hai cứ 8 ngày cập cảng một lần; tàu thứ ba cứ 10 ngày cập cảng một lần. Vào một ngày nào đó, ba tàu cùng cập cảng. Sau ít nhất bao nhiêu ngày thì ba tàu lại cùng cập cảng?
Tìm bội chung nhỏ nhất của:
a) 19 và 46;
b) 27 và 315;
c) 60, 72 và 63;
d) 60, 100 và 140
Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
Tìm hai số tự nhiên a, b sao cho: 0 < a < b, a + b = 42 và BCNN (a, b) = 72
Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia cho 4 dư 3, chia cho 5 dư 1.
Trong một đợt trồng cây, học sinh của lớp 6B đã trồng được một số cây. Số đó là số tự nhiên nhỏ nhất thỏa mãn chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9. Học sinh lớp 6B đã trồng được bao nhiêu cây?
Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4.
Học sinh của một trường trung học cơ sở khi xếp hàng 20 học sinh, hàng 25 học sinh, hàng 30 học sinh đều thừa 15 học sinh, nhưng xếp vào hàng 41 học sinh thì vừa đủ. Tính số học sinh của trường đó, biết số học sinh của trường ít hơn 1 200 học sinh.
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số chẵn
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1