Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 81

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x + y - z - 3 = 0\] và hai điểm \[A\left( {1;1;1} \right)\], \[B\left( { - 3; - 3; - 3} \right)\]. Mặt cầu \[\left( S \right)\] đi qua hai điểm \[A,{\rm{ }}B\] và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó

A. \[R = 4.\]               

B. \[R = 6.\]               

Đáp án chính xác

C. \[R = \frac{{2\sqrt {33} }}{3}\]  

D. \[R = \frac{{2\sqrt {11} }}{3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Gọi \(I = AB \cap \left( P \right)\).

Trong không gian Oxyz, cho mặt phẳng (P):x + y - z - 3 = 0 (ảnh 1)

Ta có \(\overrightarrow {BA} = \left( {4;4;4} \right) = 4\left( {1;1;1} \right) \Rightarrow AB:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 1 + t\end{array} \right. \Rightarrow I\left( {t + 1;t + 1;t + 1} \right).\)

\(I \in \left( P \right) \Rightarrow \left( {t + 1} \right) + \left( {t + 1} \right) - \left( {t + 1} \right) - 3 = 0 \Leftrightarrow t = 2 \Rightarrow I\left( {3;3;3} \right)\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {IA} = \left( { - 2; - 2; - 2} \right)}\\{\overrightarrow {IB} = \left( { - 6; - 6; - 6} \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IA = 2\sqrt 3 }\\{IB = 6\sqrt 3 }\end{array}} \right.\)

Mặt cầu \(\left( S \right)\) tiếp xúc với \(\left( P \right)\) tại C nên IC là tiếp tuyến của \(\left( S \right)\).

Do đó \(IA.IB = I{C^2} \Rightarrow IC = \sqrt {IA.IB} = 6 \Rightarrow C\) thuộc mặt cầu có tâm \(I\left( {3;3;3} \right)\) và bán kính \(R = IC = 6\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[y = \frac{{mx + 7m - 8}}{{x - m}}\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên từng khoảng xác định?

Xem đáp án » 08/09/2022 232

Câu 2:

Biết rằng \[\int\limits_2^4 {\frac{{{x^3} + 2}}{{{x^2} + x}}dx} = a + b\ln 2 + c\ln 3 + d\ln 5,\] với \[a,{\rm{ }}b,{\rm{ }}c,{\rm{ }}d \in \mathbb{Z}.\] Tính giá trị của biểu thức \[S = a + b + c + d.\]

Xem đáp án » 08/09/2022 217

Câu 3:

Tìm giá trị nhỏ nhất \[{y_{\min }}\] của hàm số \[y = {x^4} - 4{x^3} + 8x.\]

Xem đáp án » 08/09/2022 187

Câu 4:

Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.

Xem đáp án » 08/09/2022 172

Câu 5:

Trong không gian Oxyz, cho đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = - 1\\z = 3 + 2t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right).\] Đường thẳng d đi qua điểm có tọa độ nào dưới đây?

Xem đáp án » 08/09/2022 163

Câu 6:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\]

Xem đáp án » 08/09/2022 161

Câu 7:

Có bao nhiêu số phức \[z\] thỏa mãn \[\left( {1 + i} \right)z + \bar z\] là số thuần ảo và \[\left| {z - 2i} \right| = 1\]?

Xem đáp án » 08/09/2022 157

Câu 8:

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng

Xem đáp án » 08/09/2022 141

Câu 9:

Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\]\[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng

Xem đáp án » 08/09/2022 138

Câu 10:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ (ảnh 1)

Xem đáp án » 08/09/2022 131

Câu 11:

Cho ba số phức \[{z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\] thỏa mãn \[\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\]; \[\left| {{z_1} - {z_2}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2}\] \[z_1^2 = {z_2}{z_3}.\] Tính giá trị của \[\left| {{z_2} - {z_3}} \right| - \left| {{z_3} - {z_1}} \right|\].

Xem đáp án » 08/09/2022 127

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \[d:\left\{ \begin{array}{l}x = 3 + 3t\\y = 4 + 2t\\z = 2 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right).\] Xét đường thẳng \[\Delta :\frac{{x - 2}}{6} = \frac{{y - 1}}{4} = \frac{{z + 3}}{m},\] với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng \[\Delta \] song song với đường thẳng \[d.\]

Xem đáp án » 08/09/2022 124

Câu 13:

Tìm tập xác định D của hàm số \[y = {\left( {{x^2} - 6x + 8} \right)^{\frac{1}{{2020}}}}.\]

Xem đáp án » 08/09/2022 121

Câu 14:

Điểm nào trong hình vẽ bên là điểm biểu diễn số phức \[z = - 1 - 2i\]?

Điểm nào trong hình vẽ bên là điểm biểu diễn số phức  (ảnh 1)

Xem đáp án » 08/09/2022 120

Câu 15:

Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]

Xem đáp án » 08/09/2022 117

Câu hỏi mới nhất

Xem thêm »
Xem thêm »