Cho hình chóp có đáy là hình vuông cạnh . Tam giác vuông tại và nằm trong mặt phẳng vuông góc với đáy. Gọi là góc tạo bởi đường thẳng và mặt phẳng , với . Tìm giá trị lớn nhất của thể tích khối chóp .
A.
B.
C.
D.
Đáp án C
Gọi là đỉnh thứ tư của hình bình hành .
Khi đó mà nên .
Ta có , do đó
Đặt
Gọi là hình chiếu của lên , ta có
Do đó đạt giá trị lớn nhất khi lớn nhất.
Vì vuông tại nên
.
Từ đó khi
Vậy .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng . Thể tích khối tròn xoay tạo thành khi quay hình phẳng quanh trục bằng:
Cho hàm số xác định trên , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số nghiệm thực của phương trình là:
Cho hai số thực thỏa mãn . Mệnh đề nào dưới đây là mệnh đề đúng?
Cho đồ thị của ba hàm số như hình vẽ. Mệnh đề nào dưới đây là mệnh đề đúng?
Trong không gian , cho đường thẳng là giao tuyến của mặt phẳng với mặt phẳng . Tính khoảng cách từ điểm đến đường thẳng .
Hàm số có bảng biến thiên như hình bên:
Hỏi hàm nghịch biến trên khoảng nào dưới đây?