Cho hình chóp S.ABCD có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng . Biết , khoảng cách từ A đến mặt phẳng (SBC) bằng
Đáp án B
Gọi H là chân đường vuông góc kẻ từ S đến mặt phẳng (ABC)
Khi đó từ giả thiết ta có
Suy ra (gn-cgv)
Suy ra hay H là tâm đường tròn ngoại tiếp .
Tam giác ABC có
Theo công thức Hê-rông thì diện tích tam giác ABC là
Lại có (với R là bán kính đường tròn ngoại tiếp ).
Hay .
Xét tam giác SHA vuông tại H có .
Thể tích khối chóp S.ABC là .
Lại có vuông tại H nên
Xét tam giác SBC có suy ra
Từ đó .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó?
Số giá trị nguyên của tham số m để phương trình có đúng 4 nghiệm phân biệt thuộc đoạn là
Cho hai số thực dương x, y thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức .
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, góc giữa mặt bên và mặt phẳng đáy là thỏa mãn . Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỷ số thể tích của hai khối đa diện (khối bé chia khối lớn) bằng
Cho một hình nón đỉnh S có chiều cao bằng 8cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có đường sinh bằng 4cm. Tính thể tích của khối nón (N).