Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại . Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng . Tính khoảng cách từ C đến .
Đáp án A
Gọi I là trung điểm của SA.
Tam giác SAB, SAC vuông tại là tâm mặt cầu ngoại tiếp chóp S.ABC.
Gọi H là trung điểm của BC. Vì vuông tại là tâm đường tròn ngoại tiếp tam giác .
Gọi R là bán kính mặt cầu ngoại tiếp chóp S.ABC.
Theo đề bài ta có:
.
Xét tam giác vuông ABC có: .
Xét tam giác vuông IAH có: .
.
Ta có: .
Xét tam giác vuông SAB có .
Ta có:
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số xác định, liên tục trên và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
Có bao nhiêu giá trị nguyên của tham số m trên đoạn để hàm số có tập xác định .
Hàm số đạt giá trị nhỏ nhất tại điểm thuộc khoảng nào sau đây?
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng để hàm số đồng biến trên đoạn .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, góc giữa đường thẳng SB và mặt phẳng (ABC) bằng . Tính khoảng cách giữa hai đường thẳng AC và SB.
Cho hình chóp S.ABC có đáy vuông cân ở . Gọi G là trọng tâm của , đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
Cho hàm số xác định và liên tục trên R, có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết . Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E.
Gọi là nghiệm dương nhỏ nhất của phương trình . Chọn khẳng định đúng?