Thứ năm, 14/11/2024
IMG-LOGO

Câu hỏi:

15/07/2024 110

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB=BC=a . Cạnh bên SA vuông góc với đáy, SBA^=60° . Gọi M là điểm nằm trên AC sao cho AC=2CM . Tính khoảng cách giữa SM AB.

A. 6a77.

B. a77.

C. a721.

D. 3a77.

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB=BC=a . Cạnh bên SA vuông góc với đáy, góc SBA=60 độ . Gọi M là điểm nằm trên AC sao cho AC=2CM . Tính khoảng cách giữa SM và AB. (ảnh 1)

Trong (ABC), qua M kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với AM. Hai đường thẳng này cắt nhau tại E ta được tứ giác ABEM là hình bình hành.

Vì ME//ABAB//(SME)d(AB;SM)=d(AB;(SME))=d(A;(SME))

Từ A trong mặt phẳng (ABEM)   kẻ AKME , lại có:  (do ).

Trong (SAK)   kẻ AHSK  tại H.

Ta có  (do SA(ABEM)EK(SAK) )

 AH(SKE)  tại H.

Từ đó d(AB;SM)=d(A;(SME))=AH .

Xét tam giác SBA vuông tại A SA=AB.tanSBA=a.tan60°=a3 .

Lại có tam giác ABC vuông cân tại B nên AC=AB2=a2CM=AC2=a22 .

Do đó AM=AC+CM=3a22 .

 ΔABCvuông cân tại B nên ACB=45°CBE=ACB=45°  (hai góc so le trong). 

Từ đó ABE=ABC=CBE=90°+45°=135° , suy ra  (hai góc đổi hình bình hành).

Nên tam giác AME là tam giác tù nên K nằm ngoài đoạn ME.

Ta có:  mà tam giác AMK vuông tại K nên tam giác AMK vuông cân tại K. AK=AM2=3a2

Xét tam giác SAK vuông tại A có đường cao AH, ta có: 1AH2=1SA2+1AK2=13a2+19a2AH=3a77 .

Vậy d(AB;SM)=3a77

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAC) tạo với (SBC) một góc 60 độ và mặt phẳng (SAC) tạo với (SBC) một góc φ  thỏa mãn cosφ=24  . Gọi φ  là góc tạo bởi SA và mặt phẳng (ABC) . Tính tanα .

Xem đáp án » 08/09/2022 945

Câu 2:

Cho hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn (O) lấy hai điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng R22, thể tích hình nón đã cho bằng:

Xem đáp án » 08/09/2022 282

Câu 3:

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, góc giữa mặt phẳng (A'BC)  và mặt phẳng (ABC)  bằng 45° . Thể tích của khối lăng trụ ABC.A’B’C’ bằng:

Xem đáp án » 08/09/2022 264

Câu 4:

Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh a. Hai mặt bên (SAB)  (SAC)cùng vuông góc với đáy vàSB=a3 . Tính thể tích khối chóp S.ABC.

 

Xem đáp án » 08/09/2022 205

Câu 5:

Cho hàm số y=f(x)  thỏa mãn f(0)=1,f'(x)  liên tục trên R và 03f'(x)dx=9  . Giá trị của f(3) là:

Xem đáp án » 08/09/2022 189

Câu 6:

Tính chiều cao h của hình trụ biết chiều cao h bằng bán kính đáy và thể tích của khối trụ là 8π .

Xem đáp án » 08/09/2022 189

Câu 7:

Cho cấp số cộng (un)   u1=5  d=3 . Mệnh đề nào sau đây đúng?

Xem đáp án » 08/09/2022 179

Câu 8:

Cho các đường thẳng d1:x11=y+12=z1  d1:x11=y+12=z1 . Viết phương trình đường thẳng Δ  đi qua A(1;0;2) , cắt d1  và vuông góc với d2  .

Xem đáp án » 08/09/2022 179

Câu 9:

Cho hàm số y=f(x)  liên tục trên R sao cho maxx[0;10]f(x)=f(2)=4 . Xét hàm số g(x)=f(x3+x)x2+2x+m . Giá trị của tham số m để maxx[0;2]g(x)=8  

Xem đáp án » 08/09/2022 167

Câu 10:

Cho hàm số y=2xmx+m . Với giá trị nào của m thì hai đường tiệm cận của đồ thị hàm số cùng với hai trục tọa độ tạo thành hình vuông.

Xem đáp án » 08/09/2022 166

Câu 11:

Cho a, b là các số dương tùy ý, khi đó ln(a+ab) bằng:

Xem đáp án » 08/09/2022 165

Câu 12:

Hàm số  y=f(x) có đạo hàm  f'(x)=(x1)2(x3) với mọi x. Phát biểu nào sau đây đúng?

Xem đáp án » 08/09/2022 162

Câu 13:

Cho hàm số f(x)=14x4mx3+32(m21)x2+(1m2)x+2019  với m là tham số thực. Biết rằng hàm số y=f(|x|)  có số điểm cực trị lớn hơn 5 khi a<m2<b+2c(a,b,c). Giá trị T=a+b+c  bằng:

Xem đáp án » 08/09/2022 161

Câu 14:

Cho hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường parabol (P) có đỉnh tại O. Gọi S là hình phẳng không bị gạch (như hình vẽ). Tính thể tích V của khối tròn xoay khi cho phần S quay quanh trục Ox.

Cho hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường parabol  (P) có đỉnh tại O. Gọi S là hình phẳng không bị gạch (như hình vẽ). Tính thể tích V của khối tròn xoay khi cho phần S quay quanh trục Ox. (ảnh 1)

Xem đáp án » 08/09/2022 153

Câu 15:

Cho hàm số y=f(x)=2x+mx1 . Tính tổng các giá trị của tham số m để |maxx[2;3]f(x)minx[2;3]f(x)|=2|  .

Xem đáp án » 08/09/2022 147

Câu hỏi mới nhất

Xem thêm »
Xem thêm »