Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

23/07/2024 143

Gọi \(d\) là đường thẳng đi qua \(A\left( {2;0} \right)\) có hệ số góc \(m\left( {m >0} \right)\) cắt đồ thị (C):y=x3+6x29x+1 tại ba điểm phân biệt \(A,B,C.\) Gọi \(B',C'\) lần lượt là hình chiếu vuông góc của \(B,C\) lên trục tung. Biết rằng hình thang \(BB'C'C\) có diện tích bằng 8, giá trị của \(m\) thuộc khoảng nào sau đây?

A.\(\left( {5;8} \right).\)

B.\(\left( { - 5;0} \right).\)

C.\(\left( {0;2} \right).\)

D.\(\left( {1;5} \right).\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cách 1:

Phương trình đường thẳng \(\left( d \right)\) có hệ số góc \(m\) và đi qua \(A\left( {2;0} \right)\) là \(y = mx - 2m\)

Hoành độ giao điểm của \(\left( d \right)\) và \(\left( C \right)\) là nghiệm của phương trình:

\( - {x^3} + 6{x^2} - 9x + 2 = m\left( {x - 1} \right) \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} - 4x + m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\{x^2} - 4x + m + 1 = 0\left( 1 \right)\end{array} \right.\)

\(x = 2 \Rightarrow y = 0 \Rightarrow A\left( {2;0} \right).\) Do đó: \(\left( C \right)\) cắt \(\left( d \right)\) tại 3 điểm phân biệt \( \Leftrightarrow \) phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1};{x_2}\) khác \(2 \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 3 - m >0\\{2^2} - 4.2 + m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m >- 3\\m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m \ne 3\end{array} \right. \Leftrightarrow m < 3\)

Theo định lí Vi-et: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = m + 1\end{array} \right.,\) mà \(m >0 \Rightarrow m + 1 >0 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} >0\\{x_1}.{x_2} >0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} >0\\{x_2} >0\end{array} \right.\)

Giả sử \(B\left( {{x_1};m{x_1} - 2m} \right)\) và \(C\left( {{x_2};m{x_2} - 2m} \right) \Rightarrow B'\left( {0;m{x_1} - 2m} \right)\) và \(C'\left( {0;m{x_2} - 2m} \right).\)

\( \Rightarrow B'C' = \left| {m\left( {{x_1} - {x_2}} \right)} \right| = m\left| {{x_1} - {x_2}} \right|;BB' = \left| {{x_1}} \right| = {x_1};CC' = \left| {{x_2}} \right| = {x_2}\)

Ta có: \({S_{BB'C'C}} = \frac{1}{2}B'C'\left( {BB' + CC'} \right) = 8 \Leftrightarrow B'C'\left( {BB' + CC'} \right) = 16 \Leftrightarrow m\left| {{x_1} - {x_2}} \right|\left( {{x_1} + {x_2}} \right) = 16\)

\( \Leftrightarrow m\left| {{x_1} - {x_2}} \right| = 4 \Leftrightarrow {m^2}{\left( {{x_1} - {x_2}} \right)^2} = 16 \Leftrightarrow {m^2}\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 16 \Leftrightarrow {m^2}\left( {16 - 4m - 4} \right) = 16\)

\( \Leftrightarrow {m^3} - 3{m^2} + 4 = 0 \Leftrightarrow \left( {m + 1} \right){\left( {m - 2} \right)^2} = 0 \Leftrightarrow m = - 1\) hoặc \(m = 2\)

Vì \(0 < m < 3 \Rightarrow m = 2 \Rightarrow m \in \left( {1;5} \right).\)

Cách 2:

Phương trình đường thẳng \(\left( d \right)\) có hệ số góc \(m\) và đi qua \(A\left( {2;0} \right)\) và \(y = m\left( {x - 2} \right)\)

Xét hàm số \(y = f\left( x \right) = - {x^3} + 6{x^2} - 9x + 2{\rm{ }}\left( C \right)\)

TXĐ: \(D = \mathbb{R}\)

\(y' = - 3{x^2} + 12x - 9 = 0 \Leftrightarrow - 6x = - 12 \Leftrightarrow x = 2;f\left( 2 \right) = 0\)

\( \Rightarrow \) Đồ thị \(\left( C \right)\) nhận điểm \(A\left( {2;0} \right)\) làm điểm uốn.

\( \Rightarrow B\) và \(C\) đối xứng nhau qua \(A;B'\) và \(C'\) đối xứng nhau qua \(O\)

\( \Rightarrow OA\) là đường trung bình của hình thang \(BB'C'C \Rightarrow \frac{{BB' + CC'}}{2} = OA = 2\)

Gọi \(d\) là đường thẳng đi qua \(A\left( {2;0} \right)\) có hệ số góc \(m\left( {m >0} \right)\) cắt đồ thị tại ba điểm phân biệt \(A,B,C.\) Gọi \(B',C'\) lần lượt là hình chiếu vuông góc củ (ảnh 1)

Diện tích của hình thang \(BB'C'C\) bằng \(8 \Rightarrow B'C' = 4\)

Không mất tính tổng quát, giả sử \({y_B} >0 \Rightarrow {y_B} = 2 \Rightarrow - {x_B}^3 + 6x_B^2 - 9{x_B} + 2 = 2 \Rightarrow \left[ \begin{array}{l}{x_B} = 0\\{x_B} = 3\end{array} \right.\)

+ \({x_B} = 0 \Rightarrow B\left( {0;2} \right) \Rightarrow \left( d \right)\) có phương trình \(y = - x + 2 \Rightarrow m = - 1 < 0\) (loại).

+ \({x_B} = 3 \Rightarrow B\left( {3;2} \right) \Rightarrow \left( d \right)\) có phương trình \(y = 2x - 4 \Rightarrow m = 2\) (thỏa mãn).

Vậy giá trị của \(m\) thuộc khoảng \(\left( {1;5} \right).\)

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng

Xem đáp án » 08/09/2022 772

Câu 2:

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình \(f\left( x \right) = 3\) là

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình \(f\left( x \right) = 3\) là (ảnh 1)

Xem đáp án » 08/09/2022 307

Câu 3:

Cho hàm số y=ax3+bx2+cx+d(a,b,c,d) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)

Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\) (ảnh 1)

Xem đáp án » 08/09/2022 258

Câu 4:

Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 3\) song song với trục hoành?

Xem đáp án » 08/09/2022 241

Câu 5:

Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị \(\left( C \right)\) và điểm \(A\left( {1;m} \right).\) Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để qua A có thể kể được đúng ba tiếp tuyến tới đồ thị \(\left( C \right).\) Số phần tử của \(S\) là

Xem đáp án » 08/09/2022 236

Câu 6:

Giá trị lớn nhất của hàm số \(y = 2{x^3} + 3{x^2} - 12x + 2\) trên đoạn \(\left[ { - 1;2} \right]\) là

Xem đáp án » 08/09/2022 229

Câu 7:

Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm \(O.\) Gọi \(X\) là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp \(X.\) Xác suất để tam giác được chọn là tam giác cân bằng

Xem đáp án » 08/09/2022 212

Câu 8:

Hình lăng trụ tam giác có bao nhiêu mặt?

Xem đáp án » 08/09/2022 209

Câu 9:

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,SA\) vuông góc với mặt phẳng đáy và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng.

Xem đáp án » 08/09/2022 204

Câu 10:

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t\) giờ được cho bởi công thức \(c\left( t \right) = \frac{t}{{{t^2} + 1}}\left( {mg/L} \right).\) Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

Xem đáp án » 08/09/2022 195

Câu 11:

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm

Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàmHàm số đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đồng biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 194

Câu 12:

Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng

Xem đáp án » 08/09/2022 189

Câu 13:

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)Số điểm cực trị của  (ảnh 1)

Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là

Xem đáp án » 08/09/2022 189

Câu 14:

Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)

Xem đáp án » 08/09/2022 187

Câu 15:

Giá trị của biểu thức \(P = \frac{{{2^3}{{.2}^{ - 1}} + {5^{ - 3}}{{.5}^4}}}{{{{10}^{ - 3}}:{{10}^{ - 2}} - {{\left( {0,1} \right)}^0}}}\) là

Xem đáp án » 08/09/2022 186

Câu hỏi mới nhất

Xem thêm »
Xem thêm »