Cho hàm số \[f\left( x \right)\] liên tục trên \[\mathbb{R}\] và thỏa mãn \[xf'\left( x \right) + \left( {x + 1} \right)f\left( x \right) = {e^{ - x}}\] với mọi \[x\]. Tính \[f'\left( 0 \right)\].
A.1
B.\[ - 1\]
C.\[\frac{1}{e}\]
D.\[e\]
Phương pháp giải:
- Nhận thấy \[\left( {x + 1} \right){e^x} = {\left( {x{e^x}} \right)^\prime }\]. Sử dụng công thức \[{\left( {uv} \right)^\prime } = u'v + uv'\].
- Sử dụng phương pháp nguyên hàm hai vế để tìm \[f\left( x \right)\].
- Tính \[f'\left( x \right)\] và tính \[f'\left( 0 \right)\].
Giải chi tiết:
Theo bài ra ta có
\[xf'\left( x \right) + \left( {x + 1} \right)f\left( x \right) = {e^{ - x}}\]\[ \Leftrightarrow x{e^x}f'\left( x \right) + \left( {x + 1} \right){e^x}f\left( x \right) = 1\]
Ta có \[{\left( {x{e^x}} \right)^\prime } = {e^x} + x{e^x} = \left( {x + 1} \right){e^x}\]
\[ \Rightarrow x{e^x}f'\left( x \right) + {\left( {x{e^x}} \right)^\prime }f\left( x \right) = 1\]
\[ \Leftrightarrow {\left[ {x{e^x}f\left( x \right)} \right]^\prime } = 1 \Leftrightarrow \int {{{\left[ {x{e^x}f\left( x \right)} \right]}^\prime }dx} = \int {dx} \Leftrightarrow x{e^x}f\left( x \right) = x + C\]
Thay \[x = 0\] ta có \[0 = 0 + C \Leftrightarrow C = 0\], do đó \[x{e^x}f\left( x \right) = x \Leftrightarrow x\left[ {{e^x}f\left( x \right) - 1} \right] = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{f\left( x \right) = \frac{1}{{{e^x}}} = {e^{ - x}}}\end{array}} \right.\]
\[ \Rightarrow f'\left( x \right) = - {e^{ - x}} \Rightarrow f'\left( 0 \right) = - {e^0} = - 1\]
Đáp án B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Có bao nhiêu giá trị nguyên của m để hàm số \[y = \frac{{mx + 4}}{{x + m}}\] nghịch biến trên khoảng \[\left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z + 4 = 0.\] Viết phương trình mặt cầu có tâm thuộc đường thẳng \[\Delta \] và tiếp xúc với cả hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right).\]
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\sqrt 2 .\] Cạnh bên \[SA\] vuông góc với đáy. Góc giữa \[SC\] và mặt phẳng đáy bằng \[{45^0}.\] Gọi E là trung điểm của \[BC.\] Tính khoảng cách giữa hai đường thẳng \[DE\] và \[SC.\]
Trong không gian với hệ tọa độ \[Oxyz,\] cho hai đường thẳng \[{d_1}:{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 2}}\] và \[{d_2}:{\mkern 1mu} {\mkern 1mu} \frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 2}}.\] Khoảng cách giữa hai đường thẳng này bằng:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[a\sqrt 3 \], \[SA \bot \left( {ABCD} \right)\] và \[SA = a\sqrt 2 \]. Tính góc giữa SC và \[\left( {ABCD} \right)\].
Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?
Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\]
Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?
Số nghiệm nguyên thuộc đoạn \[\left[ { - 99;{\mkern 1mu} {\mkern 1mu} 100} \right]\] của bất phương trình \[{\left( {\sin \frac{\pi }{5}} \right)^x} \ge {\left( {\cos \frac{{3\pi }}{{10}}} \right)^{\frac{4}{x}}}\] là:
Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].
Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]