Giá trị E(X) có thể cho ta ý niệm về:
A. độ lớn trung bình của X
B. mức độ phân tán của X
C. giá trị lớn nhất của X
D. giá trị có xác suất lớn nhất của X
Kỳ vọng E(X) cho ta ý niệm về độ lớn trung bình của X.
Đáp án cần chọn là: A
Chú ý
Một số em có thể sẽ chọn nhầm đáp án C vì nhớ nhầm ý nghĩa của E(X).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Biến ngẫu nhiên X nhận các giá trị với các xác suất tương ứng thỏa mãn:
Cho biến ngẫu nhiên X có bảng phân bố xác suất dưới đây, giá trị của là:
Gọi μ là kỳ vọng của biến ngẫu nhiên X. Công thức tính phương sai của biến ngẫu nhiên X là:
Công thức nào của biến sau đây dùng để tính độ lệch chuẩn ngẫu nhiên X?
Công thức nào sau đây không dùng để tính phương sai của biến ngẫu nhiên X có kỳ vọng E(X)=μ?
I. Định nghĩa cổ điển của xác suất.
Giả sử A là biến cố liên quan đến một phép thử với không gian mẫu chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Ta gọi tỉ số là xác suất của biến cố A, kí hiệu là P(A). Vậy P(A) = .
- Chú ý: n(A) là số phần tử của A hay cũng là số các kết quả thuận lợi cho biến cố A, còn là số các kết quả có thể xảy ra của phép thử.
- Ví dụ 1. Gieo con súc sắc cân đối và đồng chất liên tiếp hai lần. Biến cố A: “Lần đầu xuất hiện mặt 3 chấm”. Tính n(A), P(A).
Lời giải:
Gieo con súc sắc liên tiếp 2 lần, khi đó: .
Các kết quả thuận lợi cho A là:
A = {(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)}.
Do đó; n(A) = 6.
Khi đó xác suất để xảy ra biến cố A là .
- Ví dụ 2. Gieo một đồng tiền liên tiếp ba lần. Gọi B là biến cố: lần gieo thứ nhất và thứ hai giống nhau. Tính n(B), P(B)?
Lời giải:
Gieo một đồng tiền liên tiếp ba lần, khi đó:
Các kết quả thuận lợi cho biến cố B là:
B = {SSS; SSN; NNN; NNS}.
Do đó; n(B) = 4.
Vậy xác suất để xảy ra biến cố B là .
II. Tính chất của xác suất
Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, ta có định lí sau:
a) .
b) 0 ≤ P(A) ≤ 1 , với mọi biến cố A.
c) Nếu A và B xung khắc thì:
(công thức cộng xác suất )
- Hệ quả: Với mọi biến cố A, ta có: .
- Ví dụ 3. Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:
Lời giải:
Phép thử : Gieo đồng tiền 5 lần cân đối và đồng chất
Ta có : .
Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.
Biến cố đối tất cả đều là mặt ngửa.
Chỉ có duy nhất một trường hợp tất cả các mặt đều ngửa nên
Suy ra:
Xác suất của biến cố A là .
- Ví dụ 4. Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Tính xác suất của biến cố “lấy lần thứ hai được một viên bi xanh”.
Lời giải:
Gọi A là biến cố “lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra
- Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh.
Xác suất trong trường hợp này là
- Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh.
Xác suất trong trường hợp này là
- Vì 2 biến cố B và C là xung khắc nên PA = PB + PC = 0,625.
III. Các biến cố độc lập, công thức nhân xác suất.
- Nếu sự xảy ra của một biến cố không ảnh hưởng đến xác suất xảy ra của một biến cố khác thì ta nói hai biến cố đó độc lập.
- Tổng quát:
A và B là hai biến cố độc lập khi và chỉ khi: P(A.B) = P(A).P(B).
- Ví dụ 5. Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,6. Xác suất để có đúng 2 người bắn trúng đích bằng:
Lời giải:
Gọi X là biến cố: “có đúng 2 người bắn trúng đích”.
- Gọi A là biến cố: “người thứ nhất bắn trúng đích”,
- Gọi B là biến cố: “người thứ hai bắn trúng đích”, .
- Gọi C là biến cố: “người thứ ba bắn trúng đích”,
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
= 0,8.0,6.0.4 + 0,8.0,4.0,6 + 0,2.0,6.0,6 = 0,456.