Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

06/07/2024 111

Cho một mô hình tứ diện đều \(ABCD\) cạnh 1 và vòng tròn thép có bán kính \(R.\) Hỏi có thể cho mô hình tứ diện trên đi qua vòng tròn đó (bỏ qua bề dày của vòng tròn) thì bán kính \(R\) nhỏ nhất gần với số nào trong các số sau?

A. 0,461.

B. 0,441.

C. 0,468.

D. 0,448.

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho một mô hình tứ diện đều \(ABCD\) cạnh 1 và vòng tròn thép có bán kính \(R.\) Hỏi có thể cho mô hình tứ diện trên đi qua vòng tròn đó (bỏ qua bề dày của vòng tròn) thì bán kính \(R\) nhỏ n (ảnh 1)

Gọi tứ diện đều là \(ABCD,\) rõ ràng nếu bán kính \(R\) của vòng thép bằng bán kính của đường tròn ngoại tiếp tam giác \(ABD\) ta có thể cho mô hình tứ diện đi qua được vòng tròn, do đó ta chỉ cần xét các vòng tròn có bán kính không lớn hơn bán kính đường tròn ngoại tiếp tam giác \(ABD.\)

Đưa đỉnh C qua vòng thép và đặt đỉnh \(A\) lên vòng thép, giả sử vòng thép tiếp xúc với hai cạnh \(BC\) và \(CD\) lần lượt tại \(M\) và \(N,\) có thể thấy trong trường hợp này ta luôn đưa được mô hình tứ diện qua vòng thép bằng cách cho đỉnh \(A\) đi qua trước rồi đổi sang các đỉnh \(B\) hoặc \(D.\)

Do vậy để tìm vòng thép có bán kính nhỏ nhất ta chỉ cần tìm các điểm \(M,N\) lần lượt trên các cạnh \(BC,CD\) sao cho bán kính đường tròn ngoại tiếp tam giác \(AMN\) nhỏ nhất.

Do tính đối xứng của hình ta chỉ cần xét với tam giác \(AMN\) cân tại \(A.\)

Đặt \(CM = x,\left( {0 < x < 1} \right),\) ta có \(MN = CM = CN = x.\)

\(A{M^2} = C{M^2} + C{A^2} - 2CM.CA.\cos {60^0} = {x^2} + 1 - 2x.\frac{1}{2} = {x^2} - x + 1 \Rightarrow AM = \sqrt {{x^2} - x + 1} \)

\(AN = AM = \sqrt {{x^2} - x + 1} .\)

Ta có \(\cos \widehat {MAN} = \frac{{A{M^2} + A{N^2} - M{N^2}}}{{2.AM.AN}} = \frac{{2\left( {{x^2} - x + 1} \right) - {x^2}}}{{2\left( {{x^2} - x + 1} \right)}} = \frac{{{x^2} - 2x + 2}}{{2\left( {{x^2} - x + 1} \right)}}\)

\(\sin \widehat {MAN} = \sqrt {1 - {{\left( {\frac{{{x^2} - 2x + 2}}{{2\left( {{x^2} - x + 1} \right)}}} \right)}^2}} = \frac{{\sqrt {{x^2}\left( {3{x^2} - 4x + 4} \right)} }}{{2\left( {{x^2} - x + 1} \right)}}\)

Bán kính đường tròn ngoại tiếp tam giác \(AMN\) là

\({R_{AMN}} = \frac{{MN}}{{2\sin \widehat {MAN}}} = \frac{{{x^2} - x + 1}}{{\sqrt {3{x^2} - 4x + 4} }}\)

\(R\) chính là giá trị nhỏ nhất của \({R_{AMN}}\) trên khoảng \(\left( {0;1} \right).\)

Xét \(f\left( x \right) = \frac{{{x^2} - x + 1}}{{\sqrt {3{x^2} - 4x + 4} }},x \in \left( {0;1} \right),\) sử dụng Casio ta được giá trị nhỏ nhất gần đúng của \(f\left( x \right)\) là \(0.4478.\)

Vậy giá trị nhỏ nhất mà \(R\) có thể nhận được gần với \(0.448.\)

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 08/09/2022 222

Câu 2:

Cho khối lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy và cạnh bên cùng bằng \(a.\) Tính thể tích của khối lăng trụ đó theo \(a.\) 

Xem đáp án » 08/09/2022 195

Câu 3:

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = {x^3} + mx - \frac{1}{{5{x^2}}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)?\) 

Xem đáp án » 08/09/2022 189

Câu 4:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 08/09/2022 188

Câu 5:

Tìm tập xác định \(D\) của hàm số \(y = \ln \sqrt {{x^2} - 3x + 2} \) 

Xem đáp án » 08/09/2022 186

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {{x^2} - 2x} \right),\) với mọi \(x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có 5 điểm cực trị? 

Xem đáp án » 08/09/2022 179

Câu 7:

Đường cong hình sau là đồ thị của một trong bốn hàm số được cho dưới đây, hỏi đó là hàm số nào?

Đường cong hình sau là đồ thị của một trong bốn hàm số được cho dưới đây, hỏi đó là hàm số nào? (ảnh 1)

Xem đáp án » 08/09/2022 172

Câu 8:

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 3\) và công sai \(d = 2.\) Tính \({u_9}.\)

Xem đáp án » 08/09/2022 165

Câu 9:

Tính diện tích xung quanh \(S\) của hình nón có bán kính đáy \(r = 4\) và chiều cao \(h = 3.\)

Xem đáp án » 08/09/2022 163

Câu 10:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 08/09/2022 152

Câu 11:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 08/09/2022 150

Câu 12:

Tổng giá trị tất cả các nghiệm của phương trình \({\log _3}x.{\log _9}x.{\log _{27}}x.{\log _{81}}x = \frac{2}{3}\) bằng

Xem đáp án » 08/09/2022 148

Câu 13:

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = x{e^x}\) tại điểm thuộc đồ thị tại điểm có hoành đồ \({x_0} = 1.\) 

Xem đáp án » 08/09/2022 147

Câu 14:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 08/09/2022 146

Câu 15:

Diện tích xung quanh \({S_{xq}}\) của hình trụ xoay có bán kính đáy \(r\) và đường cao \(h\) là

Xem đáp án » 08/09/2022 143

Câu hỏi mới nhất

Xem thêm »
Xem thêm »