IMG-LOGO

Câu hỏi:

20/07/2024 119

Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:

Cho hàm số f(x). Bảng biến thiên của hàm số f'(x) như sau:  Số điểm cực trị của hàm số y = f(x^2 - 2x) là: (ảnh 1)

  Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:

A. 7.

Đáp án chính xác

B. 9.

C. 3.

D. 5.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Xét \(y = f\left( {{x^2} - 2x} \right) \Rightarrow y' = \left( {2x - 2} \right).f'\left( {{x^2} - 2x} \right)\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\f'\left( {{x^2} - 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right)\\{x^2} - 2x = {x_2} \in \left( { - 1;0} \right)\\{x^2} - 2x = {x_3} \in \left( {0;1} \right)\\{x^2} - 2x = {x_4} \in \left( {1; + \infty } \right)\end{array} \right.\)

Trường hợp 1: \({x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right) \Leftrightarrow {x^2} - 2x - {x_1} = 0.\)

Ta có \(\Delta ' = 1 - 1.\left( { - {x_1}} \right) = 1 + {x_1} < 0,\forall {x_1} \in \left( { - \infty ; - 1} \right)\) nên phương trình vô nghiệm. Suy ra trường hợp này không có điểm cực trị.

Trường hợp 2: \({x^3} - 2x = {x_2} \in \left( { - 1;0} \right) \Leftrightarrow {x^2} - 2x - {x_2} = 0.\)

Ta có \(\Delta ' = 1 - 1.\left( { - {x_2}} \right) = 1 + {x_2} >0,\forall {x_2} \in \left( { - 1;0} \right)\) nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Trường hợp 3: \({x^2} - 2x = {x_3} \in \left( {0;1} \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Trường hợp 4: \({x^2} - 2x = {x_4} \in \left( {1; + \infty } \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.

Mặt khác, các hệ số trong các phương trình ở trường hợp 2, 3, 4 vừa xét đều khác nhau hệ số \(c\) nên các nghiệm của phương trình này đều khác nhau và đều khác 1.

Vậy hàm số \(y = f\left( {{x^2} - 2x} \right)\) có 7 điểm cực trị. Ta chọn đáp án A.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng

Xem đáp án » 08/09/2022 489

Câu 2:

Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng

Cho đồ thị hàm số f(x) = ax^4 + bx^2 + c như hình vẽ bên. Khẳng định nào sau đây là đúng (ảnh 1)

Xem đáp án » 08/09/2022 299

Câu 3:

Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 5x + 4\) và trục \(Ox.\) Thể tích của khối tròn xoay sinh ra khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng:

Xem đáp án » 08/09/2022 283

Câu 4:

Gọi \(M,N\) là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 1\) trên \(\left[ {0;2} \right].\) Khi đó \(M + N\) bằng

Xem đáp án » 08/09/2022 275

Câu 5:

Cho các số thực \(a,b,c\) thỏa mãn \({a^{{{\log }_3}7}} = 27,{b^{{{\log }_7}11}} = 49,{c^{{{\log }_{11}}25}} = \sqrt {11} .\) Giá trị của biểu thức \(A = {a^{{{\left( {{{\log }_3}7} \right)}^2}}} + {b^{{{\left( {{{\log }_7}11} \right)}^2}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}_2}}}\) là  

Xem đáp án » 08/09/2022 224

Câu 6:

Tập xác định của hàm số \(y = {\log _2}\frac{{x + 3}}{{2 - x}}\) là

Xem đáp án » 08/09/2022 215

Câu 7:

Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(2a.\) Thể tích khối trụ bằng

Xem đáp án » 08/09/2022 211

Câu 8:

Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( \alpha \right):x + 2y - 1 = 0.\) Vectơ nào sau đây là một vectơ pháp tuyến của \(\left( \alpha \right)?\) 

Xem đáp án » 08/09/2022 208

Câu 9:

Trong không gian \(Oxyz,\) cho điểm \(A\left( {4; - 1;3} \right)\) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}.\) Tọa độ điểm \(M\) là điểm đối xứng với điểm \(A\) qua \(d\) là

Xem đáp án » 08/09/2022 208

Câu 10:

Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng

Xem đáp án » 08/09/2022 207

Câu 11:

Số phức liên hợp của số phức \(4 - 3i\) là 

Xem đáp án » 08/09/2022 193

Câu 12:

Cho khối lăng trụ có diện tích đáy \(B = 8\) và chiều cao \(h = 6.\) Thể tích của khối lăng trụ đã cho bằng 

Xem đáp án » 08/09/2022 186

Câu 13:

Cho khối nón có chu vi đáy \(8\pi \) và chiều cao \(h = 3.\) Thể tích khối nón đã cho bằng? 

Xem đáp án » 08/09/2022 185

Câu 14:

Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {1;2} \right],f\left( 1 \right) = 1\) và \(f\left( 2 \right) = 2.\) Khi đó, \(I = \int\limits_1^2 {f'\left( x \right)dx} \) bằng

Xem đáp án » 08/09/2022 181

Câu 15:

Nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 2\) là

Xem đáp án » 08/09/2022 178

Câu hỏi mới nhất

Xem thêm »
Xem thêm »