Phân tích các đa thức sau thành nhân tử:
a) x2 – 4 + (x – 2)2
b) x3 – 2x2 + x – xy2
c) x3 – 4x2 – 12x + 27
a) Cách 1: x2 – 4 + (x – 2)2
(Xuất hiện hằng đẳng thức (3))
= (x2– 22) + (x – 2)2
= (x – 2)(x + 2) + (x – 2)2
(Có nhân tử chung x – 2)
= (x – 2)[(x + 2) + (x – 2)]
= (x – 2)(x + 2 + x – 2)
= (x – 2)(2x)
= 2x(x – 2)
Cách 2: x2 – 4 + (x – 2)2
(Khai triển hằng đẳng thức (2))
= x2 – 4 + (x2 – 2.x.2 + 22)
= x2 – 4 + x2 – 4x + 4
= 2x2 – 4x
(Có nhân tử chung là 2x)
= 2x(x – 2)
b) x3 – 2x2 + x – xy2
(Có nhân tử chung x)
= x(x2 – 2x + 1 – y2)
(Có x2 – 2x + 1 là hằng đẳng thức).
= x[(x – 1)2 – y2]
(Xuất hiện hằng đẳng thức (3))
= x(x – 1 + y)(x – 1 – y)
c) x3 – 4x2 – 12x + 27
(Nhóm để xuất hiện nhân tử chung)
= (x3 + 27) – (4x2 + 12x)
= (x3 + 33) – (4x2 + 12x)
(nhóm 1 là HĐT, nhóm 2 có 4x là nhân tử chung)
= (x + 3)(x2 – 3x + 9) – 4x(x + 3)
= (x + 3)(x2 – 3x + 9 – 4x)
= (x + 3)(x2 – 7x + 9)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Làm tính chia:
a) (6x3 – 7x2 – x + 2) : (2x + 1)
b) (x4 – x3 + x2 + 3x) : (x2 – 2x + 3)
c) (x2 – y2 + 6x + 9) : (x + y + 3)
Chứng minh:
a) x2 – 2xy + y2 + 1 > 0 với mọi số thực x và y.
b) x – x2 – 1 < 0 với mọi số thực x.
Tính nhanh giá trị của biểu thức:
a) M = x2 + 4y2 – 4xy tại x = 18 và y = 4
b) N = 8x3 – 12x2y + 6xy2 – y3 tại x = 6 và y = - 8
Làm tính nhân:
a) (2x2 – 3x)(5x2 – 2x + 1)
b) (x – 2y)(3xy + 5y2 + x)
Rút gọn các biểu thức sau:
a) (x + 2)(x – 2) – (x – 3)(x + 1)
b) (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)
Phát biểu các qui tắc nhân đơn thức với đa thức, nhân đa thức với đa thức.